ИНТЕНСИФИКАЦИЯ КОНДИЦИОНИРОВАНИЯ ОСАДКОВ МЕТАЛЛООБРАБАТЫВАЮЩИХ ПРЕДПРИЯТИЙ ДЛЯ ИХ УТИЛИЗАЦИИ

Строкач Н.О

Научные руководители – профессор Халтурина Т.И доцент Чурбакова О.В

Сибирский федеральный университет, г. Красноярск

Применение коагулирующего действия звуковых волн известно. Для установления оптимальных параметров виброакустической обработки осадка для его обезвоживания были проведены экспериментальные исследования с применением виброакустического аппарата, создающего упругие колебания звукового диапазона, состоящего из электронного блока, к которому присоединены два спаренных преобразователя, оборудованных мембранами. Колебания мембран передаются через тонкую пленку. Один переключатель управляет амплитудой микровибрации, другой — включает импульсную модуляцию частоты. Технические данные аппарата: напряжение 220 V; частота питающей сети 50 Γ ц; потребляемая мощность \leq 8 BT; количество частотных поддиапазонов 2: 1 — нижняя частота 1-3 Γ ц, верхняя частота 30-60 Γ ц; 2 — нижняя частота 0,3-0,8 к Γ ц, верхняя частота 9-18 к Γ ц; период изменения частоты 80-160 с; амплитуда микровибрации на низкой частоте 2,8-5,4; 6-12,3 мкм; период импульсной модуляции 0,5-1,2 с.

Аппарат контактным способом возбуждает микровибрацию частиц осадка посредством непрерывно меняющейся звуковой частоты. В результате частицы масел слипаются, что значительно облегчает последующее их отделение. В таблице приведены данные исследований влияние режимов виброакустической обработки на свойства осадка маслоэмульсионных сточных вод.

Свойства осадка	Исходный осадок	Виброакустическое воздействие			
		1 режим	2 режим	3 режим	4 режим
Удельное сопротивление фильтрации,см/г	548×10 ¹⁰	51× 10 ¹⁰	56× 10 ¹⁰	58,4× 10 ¹⁰	69,7× 10 ¹⁰
Плотность, г/м3	0,97	0,988	0,94	0,957	0,932
Сухой остаток, г/дм ³	29,64	14,99	15,01	14,83	15,21
Прокаленный остаток, Γ/∂_{M}^{3}	9,98	7,51	7,92	7,5	7,5
Зольность, %	33,67	50,1	52,76	50,57	49,31
Потери при про-каливании, %	66,33	49,9	47,24	50,57	50,69
Замасленность, %	54,49	33,2	30,4	34,41	36,18

Как видно из таблицы при наличии низкочастотных звуковых колебаний происходит деформация взвеси и масляных частиц производящая к улучшению водоотдающих свойств осадка. При этом удельное сопротивление осадка значительно снижается (8-10 раз).

- 1 режим нижняя частота 60 Γ ц 0,8 к Γ ц, верхняя частота 3 Γ ц 18 к Γ ц;
- 2 режим нижняя частота 30 Γ ц 0,3 к Γ ц, верхняя частота 3 Γ ц 18 к Γ ц;

- 3 режим нижняя частота 60 Γ ц 0,8 к Γ ц, верхняя частота 1 Γ ц 9 к Γ ц; 4 режим нижняя частота 30 Γ ц 0,3 к Γ ц, верхняя частота 1 Γ ц 9 к Γ ц.