УДК 534.4.42: 620.18 **НЕКОТОРЫЕ АСПЕКТЫ РАЗРУШЕНИЯ ЧИСТЫХ МЕТАЛЛОВ Окладникова Н.В.*, Мут Н.В., Гузенков Е.В., Романова А.Г., Худолеева Е.Е. Научный руководитель – доцент Перебоева А.А.** *Сибирский федеральный университет* ***000 литейно-механический завод «СКАД», г. Дивногорск**

Расположение концентраторов напряжений возможно как на поверхности деталей, так и внутри их и различаются они по форме, строению и размерам. Концентраторы напряжений чаще всего являются местами зарождения трещин, которые могут привести конструкцию или машину к частичной поломке или в целом к полному разрушению. В данной работе на основе зависимостей, полученных в работе К.Хелланом, для различных металлов проведен расчет предельных внешних воздействий, которые могут выдержать конструкции, имеющие концентраторы напряжений различной конфигурации, расположенные на наружных сторонах плоской пластины и внутри ее.

Схемы нагружения пластин, расположение концентраторов напряжений (зародышевых трещин), формулы для расчета, исходные данные по размеру пластин и концентраторов, приведены в таблице 1. Характеристики поликристаллических чистых металлов при комнатной температуре, константы упругости чистых металлов: модуль Юнга, коэффициент Пуассона, предел текучести и другие свойства, необходимые для расчета, даны в таблице 2.

Металл Параметры		Ti	Mg	Мо	Fe	Cu	Al
Температура плавления, <i>t</i> _{nл} , °С		1723	650	2610	1539	1083	660
Тип решетки		ΓП	ΓП	ОЦК	ОЦК	ГЦК	ГЦК
Параметр решетки, нм		<i>a</i> =0,295 <i>c</i> =0,468	<i>a</i> =0,320 <i>c</i> =0,521	0,315	0,286	0,361	0,404
Предел текучести σ_m , МПа		1250	90	550	120	95	20
Плотность, г/см ³		4,5	1,7	10,2	7,8	8,4	2,7
Энергия дефектов упаковки γ*,мДж/м ²		200	150	300	140	70	135
Константы упругости	Модуль Юнга Е ∙ 10⁵ , МПа	1,12	0,43	12,0	2,0	1,32	0,7
чистых ме- таллов	Коэффициент Пуассона v	0,34	0,35	0,39	0,28	0,34	0,34

Табл. 2. Характеристики поликристаллических чистых металлов

Полученные расчетным путем данные сведены в таблицу 3. Определение предельных внешних нагрузок, необходимых для начала развития и распространения трещины (P), выполнены для чистых металлов, различающихся температурой плавления, типом кристаллической решетки, энергией дефектов упаковки. Известно, что параметры макроскопических явлений при деформации и разрушении зависят от энергии дефектов упаковки. Из дислокационной теории известно, что параметры макроскопических явлений при деформации и разрушения зависят от энергии дефектов упаковки. Дефекты упаковки и величина их энергии играют большую роль в формировании дислокационной структуры, так как влияют на скорость перемещения дислокаций и их расщепленность.

Для трех типов кристаллических решеток: о.ц.к., г.ц.к., г.п., которые наиболее часто встречаются в металлических материалах, были выбраны по два металла с температурами плавления, существенно различающимися между собой. Анализ полученных расчетных данных позволяет однозначно определить влияние температуры плавления чистых металлов на *P*, имеется общая тенденция к росту данной характеристики с повышением температуры. Так для металлов с г.п. решеткой это повышение составляет примерно 14 раз, для г.ц.к. от 2 до ~ 5 раз, а для о.ц.к. около 5 раз (таблица 4). Существенное различие между металлами, имеющих решетку г.ц.к. (медь, алюминий), связано со значительным отличием плотности этих элементов.

Номер задачи	Металлы							
	Ti	Mg	Мо	Fe	Cu	Al		
1	312500	22500	137500	30000	23750	5000		
2	250000	18000	110000	24000	19000	4000		
3	13825	8960	45255	16330	15472,5	11100		
4	250000	18000	110000	24000	19000	4000		
5	125000	9000	55000	12000	9500	2000		
6	1154,7	83,14	508,07	110,85	87,76	18,48		
7	3349,37	241,15	1473,72	321,54	254,55	53,59		
8	5024,05	361,73	2210,58	482,31	381,83	80,38		

Табл. 4. Расчетные значения предельных нагрузок начала развития и распространения трещин разрушения

Для металлов с г.п. решеткой важно оценить влияние отношения с/а, которое может существенно отличаться от значения 1,633, свойственного идеальной плотноупакованной решетке из твердых шаров: для магния эта величина близка к идеальной и равна 1,628, а для титана только 1,586. Отклонение геометрии решетки от идеальной вызывает изменение относительной плотности упаковки в различных кристаллографических плоскостях, что в свою очередь влияет на характеристики скольжения при пластической деформации. С увеличением отношения с/а расстояние между примыкающими базисными плоскостями, которые нормальны оси с, увеличивается, так что они оказываются относительно более плотноупакованными, чем плоскости призмы типа {1010}. Поэтому в металлах с г.п. решеткой наряду со скольжением по базисной плоскости наблюдается скольжение по призматическим плоскостям типа $\{10\overline{1}0\}$ и пирамидальным типа {1011}. По сравнению с магнием у титана наиболее плотно упакованными плоскостями являются плоскости типа {1010}таких плоскостей в г.п. решетке шесть. Вероятность перемещения дислокаций в этих плоскостях выше, чем в плоскости базиса, которых в данной решетке только две. Следовательно, эффект упрочнения при деформации у титана должен быть выше, чем у магния. Кроме того, титан имеет более высокое значение энергии дефектов упаковки по сравнению с магнием, что способствует образованию ячеистой структуры и повышению прочностных характеристик при пластической деформации. Это положение подтверждается полученными расчетными значениями Р (см. таблицу 4).

В ходе проведенных расчетов для металлов: Ti, Mg, Mo, Fe, Cu, Al было установлено, что на величины нагрузок для начала развития и распространения трещин влияют следующие факторы: тип кристаллической решетки; температура плавления металлов (сила межатомных связей); величина энергии дефектов упаковки; схема приложения нагрузки (напряжений) и расположение концентраторов напряжений.

N⁰	Схемы нагружения	Формула для расчета	Исходные данные
1		$P = \sigma_m \cdot b \cdot t$	<i>b</i> =50 мм <i>t</i> =5мм
2	· · · · ·	$P = \sigma_m \cdot (b_1 + b_2) \cdot t$	<i>b</i> =50 мм <i>t</i> =5мм <i>d</i> =10 мм <i>b</i> ₁ = <i>b</i> ₂
3		$\eta = \frac{1}{1 - \nu^2}$ $\sigma = \eta \cdot E \cdot \frac{c}{b}$ $c = 2\sqrt{\frac{\nu \cdot b}{\eta \cdot E}}$	<i>b</i> =50 мм
4		$P = 2 \cdot a \cdot t \cdot \sigma_m$	<i>а</i> =20 мм <i>t</i> =5 мм
5		$P=2\cdot a\cdot t\cdot \sigma_m$	<i>а</i> =10 мм <i>t</i> =5 мм
6		$P = \beta \cdot t \cdot \sigma'_{m} ; \ \sigma'_{m} = \frac{2 \cdot \sigma_{m}}{\sqrt{3}}$ $\beta^{2} + 2 \cdot \beta \cdot \left[\left(1 + \frac{\sigma_{m}}{\sigma'_{m}} \right) \cdot \frac{L}{a} - 1 \right] = \frac{\sigma_{m}}{\sigma'_{m}}$	а=50 мм t=5 мм L=100 мм
7		$M = P \cdot S = \frac{1}{2} \cdot \frac{\sigma'_{\delta} \cdot \dot{a}^2 \cdot t}{1 + \sigma'_{\delta} / \sigma_{\delta}}$	<i>t</i> =5 мм <i>a</i> =10 мм
8		$M = P \cdot S = \frac{1}{2} \cdot \frac{\sigma'_m \cdot a^2 \cdot t}{1 + \sigma'_m / \sigma_m}$	<i>а</i> =15 мм <i>t</i> =3 мм

Табл. 1. Схемы нагружения и расположение концентраторов напряжений при расчете предельных внешних нагрузок