МИКРОБИОЛОГИЧЕСКИЙ СИНТЕЗ МАТЕРИАЛОВ НОВОГО ПОКОЛЕНИЯ – ПОЛИГИДРОКСИАЛКАНОАТОВ (ПГА)

Сырвачева Д.А. Научный руководитель – профессор Волова Т.Г.

Сибирский федеральный университет

Полиэфиры микробного происхождения - полигидроксиалканоаты (ПГА) вызывают все больший интерес среди микробиологов, биотехнологов и материаловедов в качестве технического аналога не разрушаемых полиолефинов в связи с их свойством деградировать в природной среде без образования токсичных продуктов, а также из-за возрастающих требований к охране окружающей среды. Основными тенденциями в современной индустрии полимеров является создание новых экологически чистых полимерных материалов с широким спектром полезных свойств. Направление поиска в последние годы смещается в сторону производства не аккумулируемых в природной среде материалов, разрушаемых в естественных биологических процессах, то есть вписывающихся в биосферные круговоротные циклы. В этой связи большую актуальность приобрели работы по биополимерам (полимерам биологического происхождения). В ходе разработки эффективных способов синтеза ПГА существенное внимание уделяется бактериям Ralstonia eutropha в связи со способностью аккумулировать ПГА с высокими выходами на различных субстратах. Способность организма синтезировать различные сополимеры вызывает большой интерес в связи с возможностью направленного получения полимеров с заданными свойствами. Сополимеры 3- гидроксибутирата и 3гигдрогксигексаноата (поли(3-ГБ-со-3-ГГ)) отличаются физико - химическими свойствами, они менее кристалличны, поэтому позволяют получить более биотехнологичный полимер.

Целью настоящей работы было исследование способности бактерий штамма $R.\ eutropha$ В 5786 синтезировать в автотрофных условиях сополимер 3-гидроксибутират и 3- гидроксигексаноата (поли(3-ГБ-со-3-ГГ)) и выявление связи между условиями биосинтеза, структурой и свойствами сополимера для направленного получения образцов заданного состава.

Проведено культивирование бактерий на смешанном углеродном субстрате, содержащем углекислоту и добавки гексановой кислоты. В ходе эксперимента в растущую при дефиците азота автотрофную культуру $R.\ eutropha$ B5786, аккумулирующую полимер, вносили добавки гексановой кислоты на 96 и 120 час культивирования в концентрации 0,5 г/л (рис.).

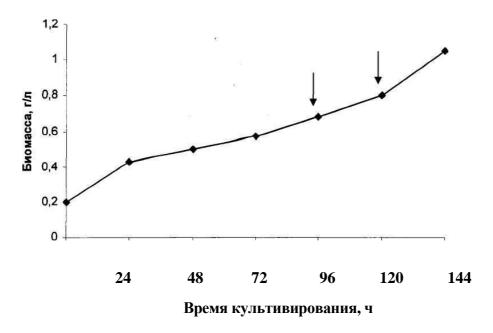


Рис. Динамика накопления биомассы R. eutropha B5786. Стрелками обозначено время добавления гексановой кислоты (0,5 г/л).

Из рисунка видно, что при концентрации гексановой кислоты $0.5\,$ г/л концентрация клеток в культуре к концу культивирования составила $1.05\,$ г/л абсолютно сухого вещества. Следует отметить, что добавление гексаноата в среду, не привело к прекращению роста клеток.

Ферментацию продолжали в течение 144 часов. Она сопровождалась накоплением в клетках бактерий полигидроксиалканоатов. В составе ПГА были зафиксированы регулярные включения 3 - гидроксигексаноата в концентрации 6,01 мол % после первой добавки гексановой кислоты и в концентрации 8,9 мол % - после второй.

Результаты определения концентрации полимера в клетках и его химический состав представлены в таблице.

Таблица Содержание и состав сополимера синтезированного штаммом *R. eutropha B5786* при дробной подаче гексановой кислоты

Номер	Биомасса,	ПГА, %	мол, %				
			30HC ₄	3OHC ₅	3OHC ₆		
после первой добавки гексаноата							
1	0,68	41,2	89,3	1,82	6,01		
2	0,54	27,8	91,69	1,46	6,85		
3	0,8	46,2	91,2	0,38	6,42		
после второй добавки гексаноата							

1	1,02	42	89,5	1,8	8,88
2	1,05	45	90,04	1,48	8,48
3	0,9	44,9	90,44	1,35	8,21

Как видно из таблицы, доминирующей фракцией является мономер - 3 - гидроксибутирата, его содержание составило 91,7 мол %, в составе ПГА так же обнаруживаются включения 3 - гидроксивалерата. Однако его содержание не превысило 1,82 мол %. Содержание фракции 3-гидроксигексаноата (3-ГТ) в сополимере к концу культивирования было зафиксировано 8,9 мол %. Общий выход полимера составил 46,2 % от веса сухой биомассы (табл.).

Таким образом, показано, что исследуемый штамм способен синтезировать сополимер 3 - гидроксибутират и 3 - гидроксигексаноата (поли(3- Γ Б-со-3- Γ Γ)) в автотрофных условиях. Знание закономерностей структурно-функциональной организации внутриклеточного цикла $\Pi\Gamma$ A дает возможности управления этим процессом и основу для синтеза полимеров с новыми свойствами.