VJIK 004=111
SOFTWARE COMPLEXITY

Obedin N.V., Chebareva Y.B.
Scientific supervisor — Associate professor Chebava Y.B.

Siberian Federal University

“The price of reliability is the
pursuit of the utmost simplicity. It
is a price which the very rich find
most hard to pay”, - Sir Antony
Hoare, 1980

The twentieth century is known as a century of @sliments. The most important one
is a computer. It has taken the main place in derdnd work with a startlingly rapid
progress. But the chip itself which we call “a caripg machine” would be a useless heap of
metal without one thing that makes it execute owlers — the program. At the dawn of
computer era programs were quite easy but it wesstibiacompose them because there wasn't
such computer language that would be easy to utatkery both machines and humans.
Later while the process of technical evolving slastguages appeared, but programs became
more difficult too. All these lead us to the modamd quite complicated problem of computer
science in general and programming particularlye-dcomplexity of developing software.

In 1970 a theory was stated by American enginedraane of the co-founders of the
“Intel” company, Gordon Moore. Later it became ® Kknown under the name of “Moore’s
Law” and it says that the number of transistord tan be placed on an integrated circuit
doubles approximately every two years. It's trire= &mount of transistors increased from
2300 in Intel 4004 released in 1971 to 731 millirintel Core i7 released in 2008. In fact it's
not the linear but the exponential growth. Thispsition is fair not for hardware only but
also for software. For example, for eight yearsnfrt093 to 2001 the number of lines of code
in popular operating system Microsoft Windows irased from 4 million to 45. Now there
are about 2500 people working on it and they'redd into twenty groups. Division into
groups has been necessary because it's hard toonalch difficult program and almost no
one knows the whole internal architecture of thiggrt. It also involves growth of errors and
complication of amending them. A famous engine& aperation system researcher Andrew
Tanenbaum said: «The most important problem is ngaldoftware secure and reliable.
Software should be as good as a TV set: the aversgrewill not have ANY failures of any
kind in a 10-year ownership period». But it'll baaasy to satisfy this condition for many
programs all around the computer world becausbesf tomplexity.

In the article “The end of computer science?” adbutesearcher and computer
scientist Edsger Dijkstra wrote: “In academia,ndustry, and in the commercial world, there
is a widespread belief that computing scienceuas $ias been all but completed and that,
consequently, computing has "matured” from a thesae topic for the scientists to a
practical issue for the engineers, the managersta@ntrepreneur <...> | would therefore
like to posit that computing's central challenge, ¥How not to make a mess of it", has not
been met. On the contrary, most of our systemsmareh more complicated than can be
considered healthy, and are too messy and chawtie tused in comfort and confidence.”
This quotation has something in common with hiseothrticle called “Why American
computing science seems incurable?” Both artiddsus that the problem is in attitude to

computer science. It is believed to be in finalpghdike mathematics or physics and that's
why the main direction of scientists’ work is tovel®p and improve methods and solutions
that have already been invented, but not to crem® ones. Especially it applies to
programming languages and algorithms because ia sptheir plenty and development the
basic ones are still the same. It requires rathestgamount of research work to develop new
ways of software creation and to improve machimgcl@altogether. But if we have a look at
the most technically developed country in the werlithe United States of America - we'll see
that even there government and industry don't assmpugh funds on such researches. It is
proved by reports of the United States Nationak&e Foundation: from 638 millions of
dollars inquired in 2010 on research work in theddfiof computer science only 20 million
were assigned to work on the problem of computatibeyond reaching the physical and
conceptual limitations of current technology. Imet words less than 1 percent of all funds
wasassigned on creating new algorithms and methodsitifing hardware and software that
could help to prevent a possible stagnation imgmsgest future.

The reason hides in the relations between compguatence and industry. For industry
computer science has become a quite appropriatenteaactly the same state which it is in
now. Unwillingness to assign many funds on develgpnew ideas in computer science
makes sense because it's a long-term and rathgringestment. That's why big companies
prefer to spend money developing old good technpoladpich has established a good
reputation and preparing new developers who ally rgeeat professionals, but most of them
cannot bring something new in a computer scierids.fot because they’re not as talented as
Donald Knuth or Brian Kernighan, but because ofrteducation. Universities are exerted a
strong pressure from the industry not to indulgeunh activity as scientific education, but to
restrict itself in teaching only professional skillndustry needs new computer developers,
but computer science cannot continue developinigowit scientists and creators.

Separately | want to say a word about delusiort®mputer science. The greatest one
says that “software developing has nothing in commth mathematics”. It presents this
hard process of creating like a kind of handictiadit can be done by everyone. This delusion
has gained a huge popularity recently and thisoisgood. People cannot see the whole
problem of complexity because of mistaken opinitike this one and think that this is
normal to have a huge amount of tangled procedamedsfunctions in their programs. They
don’t want to study basic algorithms and don’t wemtuse mathematic methods to optimize
their programs. It's okay while we do not reach Khaore’s Law top limit, but sooner or later
we have to deal with it and inconvenience of sudgm@ams will be the number one problem.

There is a plan of actions to make the situatiotiebdollowing from the reasons
below:

1. We need to get rid from the prejudices about coempsitience. The common ones are
"Computer science is in final shape and is suitédni@veryday usage" and "It's easy to make
programs now". It's not right and can be proveadyplexity of huge program systems even
for a team of developers. Such systems also coatlhof errors which are uneasy to reveal
and correct. The reason to this software compleistymperfection of algorithms and
developer tools.

2. The process of computer science education alscsrteeoke corrected. Main direction
of this process now is creating new professionads, scientists and creators, but we need
them to develop science.

3. Industry and government should increase the amolufunds to assign on research
works in new fields of computer science nevertlgetbgir long-term perspectives look worse
than perspective of proved ones. Great profit imegh by risky things so we shouldn't be
afraid of it.

If we start to overcome the situation in the righte and treat a problem of software
complexity and other problems of computer scienoeenseriously we can not only prevent
further complication of programs' creation and @sdgut improve their quality and simplify
support. It will make computer science a truly stadnd intelligible science of future.

