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High-quality verification and testing is a vital step in the design of a successful 

microprocessor product. Designers must verify the correctness of large complex systems and 
ensure that manufactured parts work reliably in varied (and occasionally adverse) operating 
conditions. If successful, users will trust that when the processor is put to a task it will render 
correct results. If unsuccessful, the design can falter, often resulting in serious repercussions 
ranging from bad press, to financial damage, to loss of life. There have been a number of 
high-profile examples of faulty microprocessor designs. Perhaps the most publicized case was 
the Intel Pentium FDIV bug where an infrequently occurring functional design error caused 
erroneous results in some floating point divides. Functional design errors are not the only 
source of problems; the MIPS R10000 microprocessor was recalled due to manufacturing 
problems that resulted in unreliable operation. 
The challenges that must be overcome to build a reliable microprocessor design are great. 
There are many sources of errors, each requiring careful attention during design, verification, 
and manufacturing. We broadly classify the faults that can reduce reliability into three 
categories: design faults, manufacturing faults, and operational faults. 

Design faults are the result of human error, either in the design or specification of a 
system component that renders the part unable to correctly respond to certain inputs. The 
typical approach used to detect these bugs is simulation-based verification. A model of the 
processor being designed executes a series of tests and compares the model’s results to 
expected results. Unfortunately, design errors sometimes slip through this testing process due 
to the immense size of the test space. To minimize the probability of undetected errors, 
designers employ various techniques to improve the quality of verification including co-
simulation, coverage analysis, random test generation, and model-driven test generation. 

Another popular technique, formal verification, uses equality checking to compare a 
design under test with the specification of the design. The advantage of this method is that it 
works at a higher level of abstraction, and thus can be used to check a design without 
exhaustive simulation. The drawback to this approach is that the design and the instruction set 
architecture it implements need to be formally specified before the process can be automated. 

Complex modern designs have outpaced the capabilities of current verification 
techniques. For example, a microprocessor with 32 32-bit registers, 8k-byte instruction and 
data caches, and 300 pins cannot be fully examined with simulation-based testing. The design 
has a test space with at least 2132396 starting states and up to 2300 transition edges 
emanating from each state. While formal verification has improved detection of design faults, 
full formal verification is not possible for complex dynamically scheduled microprocessor 
designs. To date, the approach has only been demonstrated for in-order issue pipelines or 
simple out-of-order pipelines with small window sizes. Complete formal verification of 
complex modern microprocessors with out-of-order issue, speculation, and large instruction 
windows is currently an intractable problem. 

Manufacturing defects arise from a range of processing problems that manifest during 
fabrication. For example, step coverage problems that occur during the metallization process 
may cause open circuits, or improper doping in the channel of CMOS transistors may cause a 



change in the threshold voltage and timing of a device. Nonconcurrent testing techniques, 
which place the part into a special testing mode, are the primary vehicle for diagnosing these 
type of errors. Testing of the system is accomplished by adding special test hardware. Scan 
testing adds a MUX to the inputs of flip-flops that allow for reading and writing of latches 
during test mode. This method provides direct checking of flip-flop operation and indirect 
checking of combination logic connected to the scan latch. Using the scan chain, test vectors 
are loaded into the flip-flops and then combinational logic is exercised to determine if the 
implementation is faulty. Built in self test (BIST) adds specialized test generation hardware to 
reduce the time it takes to load latches with test vectors. BIST test generators typically 
employ modified linear shift feedback register (LSFR) or ROMs to generate key test vectors 
that can quickly test for internal logic defects such as single-stuck line faults. To obtain 
sufficient design coverage in current designs, BIST can take as much as 15% of the design 
area. A more global approach is taken by IDDQ testing, which uses onboard current 
monitoring to detect if there are any short-circuits. During testing, power supply currents are 
monitored while the system is exercised; any abnormally high current spikes are indicative of 
short-circuit defects. The advantage of IDDQ is that it is straightforward to test a large area all 
at once, however, it requires careful regulation to get the correct current limits. 

Operational faults are characterized as sensitivity of the chip to environmental 
conditions. It is useful to subdivide these type of errors into categories based on their 
frequency: permanent, intermittent, and transient faults. Permanent faults occur consistently 
because the chip has experienced an internal failure. Electro metal migration and hot electrons 
are two examples of permanent faults that can render a design irrevocably damaged. We also 
classify latch-up, which is caused by a unity gain in the bipolar transistor structures present in 
a CMOS layout, as a permanent fault; however, this fault can be cleared by powering down 
the system. Unlike permanent faults, intermittent faults do not appear continuously. They 
appear and disappear, but their manifestation is highly correlated with stressful operating 
conditions. Examples of this type of fault include power supply voltage noise or timing faults 
due to inadequate cooling. 

Data-dependent design errors also fall into this category. These implementation errors 
are perhaps the most difficult to find because they require specific directed testing to locate. 

Transient faults appear sporadically but cannot be easily correlated to any specific 
operating condition. The primary sources of these faults are single event radiation (SER) 
upsets. SER faults are the result of energized particle strikes on logic which can deposit or 
remove sufficient charge to temporarily turn the device on or off, possibly creating a logic 
error. While shielding is possible, its physical construction and cost make it an unfeasible 
solution at this time. Concurrent testing techniques are usually required to detect operational 
faults, since their appearance is not predictable. Three of the most popular methods are timers, 
coding techniques and multiple executions. Timers guarantee that a processor is making 
forward progress, by signaling an interrupt if the timer expires. Coding techniques, such as 
parity or ECC, use extra information to detect faults in data. While primarily used to protect 
storage, coding techniques also exist for logic. Finally, data can be checked by using a k-ary 
system where extra hardware or redundant execution is used to provide a value for 
comparison. Deep submicron fabrication technologies (i.e., process technologies with 
minimum feature sizes below 0.25um) heighten the importance of operational fault detection. 
Finer feature sizes result in smaller devices with less charge, increasing their exposure to 
noise-related faults and SER. If designers cannot meet these new reliability challenges, they 
may not be able to enjoy the cost and speed advantages of these denser technologies. 

Many reliability challenges confront modern microprocessor designs. Functional 
design errors and electrical faults can impair the function of a part, rendering it useless. While 
functional and electrical verification can find most of the design errors, there are many 



examples of non-trivial bugs that find their way into the field. Additional faults due to 
manufacturing defects and operation faults such as energetic particle strikes must also be 
overcome. Concerns for reliability grow in deep submicron fabrication technologies due to 
increased design complexity, additional noise-related failure mechanisms, and increased 
exposure to natural radiation sources. 

To counter these reliability challenges, scientists proposed the use of dynamic 
verification, a technique that adds a checker processor to the retirement phase of a processor 
pipeline. If an incorrect instruction is delivered by the core processor the checker processor 
will fix the errant computation and restart the core processor using the processor's speculation 
recovery mechanism. Dynamic verification focuses the verification effort into the checker 
processor, whose simple and flexible design lends itself to high-quality functional verification 
and a robust implementation. 

Designers presented analyses of our prototype physical checker design. Timing 
analyses indicate a fully synthesized and unpipelined 4-wide checker processor design in 
0.25um technology is capable of running at 288 MHz They are currently hand optimizing this 
design through better layout and stage pipelining. Designers fully expect their follow on 
efforts will demonstrate that the checker design is also quite scalable. In addition, area and 
power analyses of their physical design were presented. Overall, the checker processor 
requires less than 6% the area and 1.5% the power of an Alpha 21264, confirming that this 
approach is low cost. Finally, there were presented novel extensions to baseline design that 
improve coverage for operational faults and manufacturing fault detection. 

Designers feel that these results strengthen the case that dynamic verification holds 
significant promise as a means to address the cost and quality of verification for future 
microprocessors. Currently, they continue to refine their physical checker processor design, 
optimizing its layout and investigating technique to scale its performance through pipelining. 
In parallel with this effort, they are also examining how they might further leverage the fault 
tolerance of the core processor to improve core processor performance and reduce its cost. 
One such approach is to leverage the fault tolerance of the core to implement selftuning core 
circuitry. By employing an adaptive clocking mechanism, it becomes possible to overclock 
core circuitry, reclaiming design and environmental margins that nearly always exist. 
  


