ОСОБЕННОСТИ РАСТВОРЕНИЯ ГИПСА ПРИ ИСПОЛЬЗОВАНИИ В КАЧЕСТВЕ РАСТВОРИТЕЛЕЙ РАЗЛИЧНЫХ ХИМИЧЕСКИХ РЕАГЕНТОВ

Хомутов Е.И., Кулакова Ю. И. Научный руководитель – доцент к.т.н. Преснов О.М.

Сибирский федеральный университет

Цель работы - в ходе научной работы выявить вещество, необходимое для компрессионно-фильтрационных испытаний загипсованных грунтов.

Объект исследования: суффозионные процессы, методика определения жесткости кальция и растворения гипса.

Тема работы имеет первостепенное значение в деле проектирования фундаментов и строительства, так как в России очень много территорий со слабыми загипсованными грунтами и в тоже время практически отсутствуют обобщающие экспериментально-теоретические исследования таких грунтов. Имеются лишь отдельные исследования (М.Ю.Абелев, А.А.Мустафаев, О.А.Сильченко,О. М. Преснов), в которых сделана попытка определить просадочные и суффозионные деформации песков, содержащих соли. Не исследован ряд методических вопросов, связанных с изучением деформационных свойств загипсованных грунтов в полевых и лабораторных условиях. Трудности в изучении загипсованных грунтов состоят в том, что для их изучения требуется продолжительные по времени лабораторные и полевые испытания (около двух лет).

Для уменьшения сроков проведения испытаний, можно увеличить скорость фильтрации за счет повышения градиента напора і. Но при нем кроме процесса растворения и выноса частиц гипса (химическая суффозия) в образцах вымываются и частицы исследуемого грунта (механическая суффозия), что искажает результаты испытаний.

Известны лабораторные испытания засоленных грунтов с применением серной и соляной кислот. В результате применения кислот в образцах грунта растворялись не только среднерастворимые соли (гипс), но и труднорастворимые (карбонаты). Скорость испытаний значительно увеличилась, но многие металлические приборы корродировали и приходили в негодность. К тому же, эти испытания корректны только при проектировании оснований и фундаментов объектов химической промышленности, где возможны проливы кислот и щелочей. При проектировании обычных зданий применение данной методики испытаний приводит к завышению значения относительного суффозионного сжатия $\varepsilon_{\rm sf}$.

В настоящее время разработана методика проведения компрессионно-фильтрационных испытаний с применением отобранных химических реагентов. В основу которой лежит способ растворения гипса в загипсованных грунтах с помощью добавления химических реагентов.

Сущность предложенного метода по определению растворимости гипса при использовании различных растворителей состоит в дифференцированном определении катионов кальция. Метод определения содержания кальция или метод титрования кальция основан на образовании прочного комплекса соединения трилона Б с ионами кальция при рН 12, сопровождающегося изменением окраски индикатора мурексида с розового цвета в фиолетовый. Комплектация набора позволяет определять жесткость

воды в присутствии катионов меди, марганца и цинка. Чувствительность метода - от 0,5 мг-экв./л.

Анализ зависимости коэффициентов активности от ионной силы показал, что с увеличением ионной силы коэффициент возрастает нелинейно и достигает минимума 0,3 при ионной силе 0,1 моль/л. Таким образом, при этой ионной силе растворимость гипса возрастёт теоретически в 3 раза, то есть составит примерно 0,6 г гипса в 100 мл раствора. Навеска в 1 г растворится в этом случае на 90%, что нам и требуется. С другой стороны, при ионной силе 0,05 моль/л коэффициент активности составляет 0,4, то есть отличается незначительно. Мы проверили, имеет ли это существенное влияние на растворимость и проверили, имеет ли смысл увеличение концентрации. Использовался раствор концентрации 0,1 моль/л, в два раза больше и два раза меньше.

Проведение эксперимента велось по следующей методике. Приготовили раствор 0,5л на водопроводной воде и навеску исследуемой соли с предварительно подсчитанной массой и концентрацией. Определили жёсткости раствора методом титрования в двух порциях по 0,1 л раствора по методике, приведённой выше. Далее помещали в колбу с 300мл раствора соли навеску гипса массой 1гр при температуре 16-20 °С. После пятиминутного встряхивания полученный раствор пропускался через бумажный фильтр и снова определяли жесткость раствора методом титрования в двух порциях по 50мл. Для каждой соли проводилось три эксперимента с разными концентрациями и массами, после чего все данные были сведены в таблицу и график, зависимости массы растворенного гипса от концентрации соли. В качестве растворителей использовались калий хлористый, натрий хлористый, хлорид аммоний, калий азотистый, натрий серноватокислый и аммоний азотнокислый. Для сравнения результатов растворимости гипса, кроме вышеперечисленных растворителей, использовали воду. Данные экспериментов показаны в табл. 1.

Таблица 1

Растворение гипса								
№	Реагенты	Объем воды, мл	Масса реагента, гр	Масса кальция с реа- гентом, мгр	Объем раствора с гипсом, мл	Масса кальция с добавлением гипса, мгр	Масса гипса с раствором, мгр/л	Действи- тельная масса гипса с раст- в ором, гр/л
1	Вода Н₂О	100	-	19	50	174	522	1,999
					100	174		
2	Калий хлористый КСІ	500	1,86	23	50	180	540	2,07
			3,72	36		280	840	3,22
			7,44	23		236	708	2,71
3	Натрий хлористый NaCl	500	1,46	24	50	248	744	2,85
			2,93	37		234	702	2,70
			5,85	33		294	882	3,38
4	Хлорид аммония NH4Cl	500	1,31	28	50	286	858	3,29
			2,69	58		334	1002	3,84
			5,24	41		302	906	3,47
5	Калий азотнокислый KNO3	500	5,05	28	50	322	966	3,70
			10,11	46		372	1116	4,27
			20,22	31		364	1092	4,18
6	Натрий серноватокислый Na2S2O3	500	7,91	29	50	296	888	3,40
			15,81	23		358	1074	4,11
			31,62	22		350	1058	4,05
7	Аммоний азотнокислый NaH4NO3	500	4,45	30	50	282	846	3,24
			8,9	51		362	1086	4,16
			17,9	77		424	1272	4,87

Растворение гипса при использовании различных химических реагентов

В ходе эксперимента был сделан вывод, что наиболее рациональным для ускорения проведения компрессионно-фильтрационных испытаний по рассолению загипсованных грунтов будет использование в качестве растворителя раствора 0.2M аммония азотнокислого NaH_4NO_3 , растворимость гипса при концентрации 0.2 моль составила 4.87 гр/литр, что в 2.4 раза больше растворимости в воде. На втором месте по растворимости калий азотнокислый — растворимость 4.18гр/л, это в 2.1 раза больше растворимости гипса в воде. Менее всего повлияли на растворимость калий и натрий хлористые, растворимость составила 2.71гр/л и 3.38 гр/л соответственно.