ВЯЗКОСТЬ И ЭЛЕКТРОПРОВОДНОСТЬ РАСПЛАВОВ СИСТЕМЫ ${ m Bi}_2{ m O}_3$ — CaO Кучумова O.B.

Сибирский Федеральный Университет

Материалы систем на основе оксидов тяжелых металлов, таких как висмут и свинец, в течение длительного времени привлекают внимание исследователей, что связано с наличием у них важных с практической точки зрения свойств.

К числу важнейших структурно-чувствительных характеристик жидкости относят вязкость и электропроводность. Изучение этих свойств позволяет получить дополнительную информацию о строении металлических и оксидных расплавов, оценить силы взаимодействия в них и установить связь между жидким и твердым состояниями. Наряду с этим, определение вязкости и электропроводности имеет прикладное значение, поскольку эти параметры в значительной мере определяют механизмы и скорости различных физико-химических процессов.

Исследована вязкость и электропроводность расплавов системы Bi_2O_3 — CaO, с содержанием CaO 10, 20, 25, 30 и 40 мол.%. Сделан вывод, что при увеличении концентрации CaO вязкость увеличивается, а электропроводность уменьшается. Рассчитаны энергии активации для вязкости и электропроводности расплавов системы Bi_2O_3 — CaO.

Измерения вязкости были выполнены на вибрационном вискозиметре конструкции Штангельмейера совместно с сотрудниками института металлургии УрО РАН г. Екатеринбурга. Максимальная погрешность измерения вязкости составила не более 5%. Исследуемые образцы готовили из исходных оксидов Bi_2O_3 (ос.ч.) и CaO (ос.ч.) сплавлением в тигле из BeO.

На рисунке 1 представлены результаты измерения вязкости расплавов ${\rm Bi_2O_3}$ — CaO. Видно, что для всех исследованных составов значения вязкости уменьшаются с ростом температуры. Температурные зависимости вязкости этих расплавов хорошо описываются

экспоненциальным уравнением, при разделении на высоко- и низкотемпературные области $\eta = \eta_0 \exp(E_\eta/RT)$, (1) где η_0 — постоянная, E_η — энергия активации вязкого течения.

Ha рисунке представлены результаты измерения электропроводности расплавов Ві2О3 CaO. Вилно. что ДЛЯ всех исследованных составов значения у увеличиваются ростом температуры. Полученные значения ΜΟΓΥΤ быть описаны

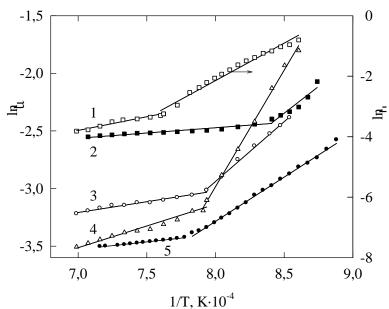


Рис. 1 — Температурные зависимости вязкости расплавов системы Bi_2O_3 — CaO, мол. % Bi_2O_3 : 1 — 60; 2 — 80; 3 — 75; 4 — 70; 5 — 90

уравнением, при разделении на низко- и высокотемпературные области

 $\chi = \chi_0 \exp(-E_{\chi}/RT). \quad (2)$

Сопоставление влияния состава на η и χ показывает, что падение η сопровождается ростом у. В то же время величины E_{η} И E_{χ} исследованных расплавов Bi_2O_3 – CaO достаточно разняться между собой, таблицы 1 И 2. Повидимому, данном случае ионы, переносящие ток, частицы, определяющие течение вязкое различны.

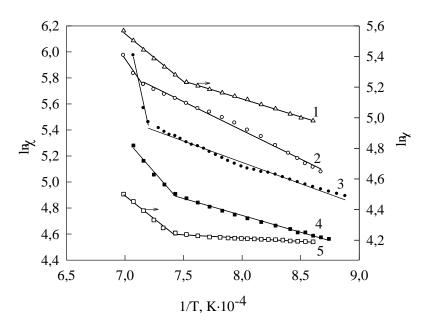


Рис. 2 — Температурные зависимости электропроводности расплавов системы Bi_2O_3 — CaO, мол. % Bi_2O_3 : 1 — 60; 2 — 80; 3 — 75; 4 — 70; 5 — 90

Таблица 1 - Энергия активации электропроводности для системы Bi₂O₃ - CaO

Состав расплавов	T, K	$\Delta E_\chi,$ кДж/моль	T, K	$\Delta E_\chi,$ кДж/моль
60 мол.% Bi ₂ O ₃ – 40 мол.% CaO	1162-1346	4	1346-1431	52
70 мол.% Bi ₂ O ₃ – 30 мол.% CaO	1162-1329	19	1329-1431	109
75 мол.% Bi ₂ O ₃ – 25 мол.% CaO	1153-1397	37	1397-1431	86
80 мол.% Bi ₂ O ₃ – 20 мол.% CaO	1144-1346	22	1346-1414	344
90 мол.% Bi ₂ O ₃ – 10 мол.% CaO	1126-1389	27	1389-1414	50

Таблица 2 - Энергия активации вязкости для системы Ві₂О₃ - СаО

Состав расплавов	Т, К	$\Delta E_{\eta},$ кДж/моль	T, K	$\Delta E_{\eta},$ кДж/моль
60 мол.% Bi ₂ O ₃ – 40 мол.% CaO	1162-1316	206	1316-1431	75
70 мол.% $Bi_2O_3 - 30$ мол.% CaO	1162-1264	168	1264-1431	31
75 мол.% Bi ₂ O ₃ – 25 мол.% CaO	1171-1260	86	1260-1431	16
80 мол.% Bi ₂ O ₃ – 20 мол.% CaO	1144-1189	77	1189-1414	8
90 мол.% Ві ₂ О ₃ – 10 мол.% СаО	1126-1286	63	1286-1414	10