ИНТЕНСИФИКАЦИЯ ПРОЦЕССА ОБЕЗВОЖИВАНИЯ ОСАДКА СТОЧНЫХ ВОД МЕТАЛЛООБРАБАТЫВАЮЩИХ ПРЕДПРИЯТИЙ ДЛЯ ИХ УТИЛИЗАЦИИ

Мананкин В.А.

Научный руководитель канд. хим. наук, профессор Т. И. Халтурина Сибирский Федеральный Университет

В настоящее время особое внимание обращено на рациональное использование природных ресурсов и сохранение чистоты водоисточников в соответствии с законом об охране окружающей природной среды. Наиболее острой экологической проблемой является сокращение отходов промышленных предприятий. И эта проблема требует выявления возможностей изменения структуры и свойств осадков для их последующей утилизации.

В работе проведены исследования свойств осадка от нейтрализации кислотнощелочных сточных вод. Данные сточные воды образуются в результате технологических процессов на AO «КраМЗ» при обработке алюминиевых изделий различными химическими веществами. При нейтрализации таких стоков в осадок выпадает Al (OH) $_3$, CaSO $_4$, CaCO $_3$, а также возможно образование H_4SiO_4 , способной к полимеризации.

Результаты исследования по изучению свойств осадка представлены в табл.1.

Таблица 1

Свойства осадка

P, г/см ²	W,%	Сухой остаток, г/дм ³	Прокаленный остаток, г/дм ³	Потери при про- каливании, г/дм ³	Удельное сопротивление осадка фильтр. см/г
0,89	9,89	18,21	10,28	7,93	273,3·10 ¹⁰

При рентгеноструктурном анализе получена дифрактограмма, которая указала, что степень упорядоченности осадка очень низкая и вещество, в основном, представлено в аморфном виде, что объясняет плохие водоотдающие свойства осадка.

Для улучшения водоотдающих свойств осадка проводилось его замораживание в естественных условиях. Показано, что криогенная обработка осадка кислотнощелочных сточных вод улучшает водоотдающую способность, при этом объемы его уменьшаются в 10-12 раз, удельное сопротивление фильтрации снижается в 4 раза.

Для определения изменения свойств осадка после замораживания и оттаивания был использован рентгеноструктурный и термогравиметричекий методы исследования.

Установлено, что после замораживания и оттаивания осадок изменяет свою структуру Дифференциально-термический анализ подтвердил наличие гиббсита при $t=585^{\circ}$ C, $t=600^{\circ}$ C, а при $t=190^{\circ}$ C наблюдается эндотермический эффект, указывающий на потерю адсорбированной воды.

Для интенсификации процесса обезвоживания осадка было изучено влияние присадочных материалов – клиноптилолита, месторождение которого расположено в Назаровском районе Красноярского края. Были определены оптимальные дозы присадочных материалов при этом удельное сопротивление осадка фильтрации снижается в 2 раза. Изменение физико-химических свойств осадка при обработке клиноптилолитом было исследовано с помощью рентгенофазового метода. Осадок после обработки при-

садочными материалами имеет кристаллическую структуру, что объясняет улучшение водоотдающей способности.

Была исследована возможность использования осадка кислотно-щелочных сточных вод в качестве реагента для обработки маслоэмульсионных стоков.

Химический анализ осадка приведен в табл.2.

Химический анализ осадка

Таблица 2

SiO_2	Al_2O_3	CaO	MgO	K ₂ O	Na ₂ O	Cr ⁶⁺	n.n.n
2,6%	21,9%	0,64%	0,6%	0,26%	0,8%	0,0035%	32%

Из таблицы 2 видно, что в осадке в достаточном количестве содержится коагулирующий ион Al^{3+} , что позволяет использовать его для реагентной обработки маслоэмульсионных сточных вод (МЭС).

Разработана схема обработки МЭС осадком от нейтрализации.

Полученные результаты по интенсификации обработки и утилизации осадков сточных вод металлообрабатывающих предприятий позволили разработать и предложить с учетом региональных условий для внедрения на АО « Красноярский металлургический завод» высокоэффективные комплексные схемы и технологии, предусматривающие сокращение отходов и их использование в качестве вторичных ресурсов.