ОСНАЩЕНИЕ ЗЕМЛЕРОЙНЫХ МАШИН ТРАССОИСКАТЕЛЯМИ

Агровиченко Д.В., Шандр А.И., Козлов В.Б., Научный руководитель доцент Иванова С.И. Сибирский федеральный университет

Цель работы: оснащение экскаватора Hitachi ZX-240 трассоискателем Сталкер РТ-02.

ВВЕДЕНИЕ

Трассоискатель является необходимым инструментом при проведении работ, связанных с обслуживанием подземных коммуникаций, к которым и относятся трубопроводы. Правильная организация поиска не только сохранит время, но и убережет от перекапывания многих кубометров грунта. Вместе с тем, безопасность является необходимым условием проведения любых работ на объектах, а поврежденный трубопровод является причиной серьезной опасности.

Установка трассоискателя на землеройную машину поспособствует решению следующих задач:

- автоматизация процесса поиска трубопровода;
- точное определение местоположения и глубины залегания подземных коммуникаций;
- уменьшение времени на поиск и вскрытие трубопровода;
- снижение риска повреждения трубопровода при вскрытии.

В ОАО "АК "Транснефть" для вскрытия магистральных трубопроводов в трассовых условиях применяются экскаваторы Hitachi ZX-240, Komatsu RC-200 и Komatsu RC-300.

В данной научно-исследовательской работе рассматривается возможность оснащения экскаватора Hitachi ZX-240 трассоискателем Сталкер РТ-02 с целью обнаружения магистрального трубопровода и его вскрытия с более низкой вероятностью повреждения.

Комплекс трассопоисковый «Сталкер 15-04» предназначен для определения конфигурации коммуникаций (кабельных линий, трубопроводов); определения глубины залегания коммуникаций.

Для реализации методов поиска предусмотрен поворот антенны с фиксацией в трех положениях: 0, 45 и 90° относительно оси. Во избежание поломки антенны запрещается поворачивать крестовину так, чтобы ее выступ выходил за пределы сектора, ограниченного выступами тройника.

На рисунке 1 изображен поиск методом максимума.

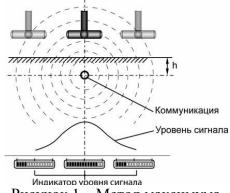
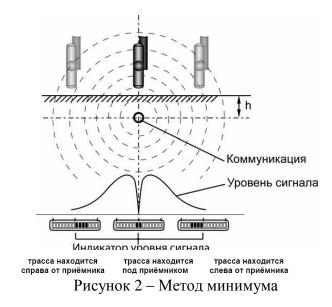
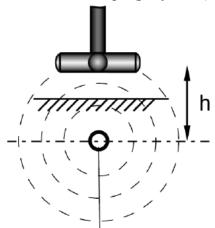



Рисунок 1 – Метод максимума

Метод максимума довольно прост и надежен, однако не обеспечивает необходимой точности, так как максимум сигнала находится на пологом участке графика. Более точно определить расположение коммуникаций можно методом минимума (рисунок 2).



Метод автоматического определения глубины залегания

Определяется ось коммуникации методом минимума.

Антенна переводится в положение для поиска методом максимума.

Нажмите кнопку «Н». В течение примерно 1,5 секунд гасится индикация и происходит измерение. После этого значение глубины залегания от антенны до центра коммуникации (трубы) отобразится на индикаторе (рисунок 3).

Коммуникация Рисунок 3 — Автоматическое определение глубины залегания

Если принимаемый сигнал слишком слабый (при уровне сигнала -60 дБ от максимального значения автоматическое измерение глубины блокируется) или есть сомнения относительно достоверности результатов автоматического измерения глубины залегания, примените «метод 45°». Суть данного метода представлена на рисунке

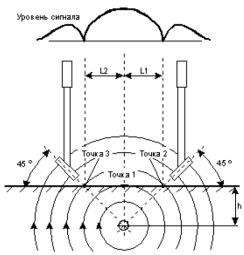
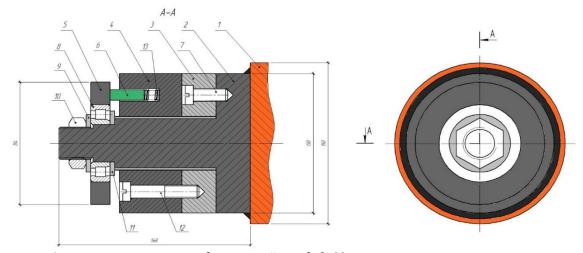


Рисунок 4 – Определение глубины залегания «методом 45°»

Установка трассоискателя на экскаватор


Самым оптимальным местом для установки приемника трассоискателя является стрела экскаватора. Данное расположение поспособствует удалению приемника от гусениц на расстояние 5 метров, что в свою очередь позволит избежать наезд экскаватора на трубопровод даже при поиске методом минимума.

Для крепления приемной антенны к стреле экскаватора используются следующие детали и элементы: хомут KOPI Sormat – 2 шт.; стальная пластина – 1 шт.

Хомут трубный КОРІ состоит из двух сборных частей, соединяемых двумя винтами. Основание хомута приваривается к стальной пластине с двух сторон, которая, в свою очередь, приваривается к стреле. Модуль магнитной антенны закрепляется с помощью хомутов.

Устройство вывода сигнала располагается в кабине для информирования экскаваторщика о положении и глубине залегания трубпровода.

С приемником данное устройство соединено посредством двух кабелей (4 пары, с тросом, одножильный, 100МГц, 8 м, NETLAN) и скользящего соединения, расположенного на шарнире, обеспечивающем перегиб стрелы (рисунок 5).

1 — часть шарнира стрелы; 2 — стальной вал; 3, 9, 11 — диэлектрическое кольцо; 4, 5 — стальное кольцо; 6 — щетка; 7, 12 — винт; 8 — роликовый подшипник; 10 — гайка; 13 — пружина Рисунок 5 — Устройство для скользящего соединения кабеля

Для крепления кабелей к стреле экскаватора используется хомут KOPI Sormat в количестве шести штук. Основание хомута приваривается к стреле с двух сторон. К крайним хомутам крепится трос.

Для обеспечения возможности поиска различными методами предусмотрен поворот антенны (рисунок 6).

Рисунок 6 – Устройство поворота антенны

Поворот антенны осуществляется при помощи электродвигателя DC (Серия: ЕС, производитель: Transtecno, мощность 0,5 кВт, диаметр 81 мм, 12 вольт постоянного тока) и ременной передачи (два алюминиевых шкива диаметрами 50 и 100 мм и ремень ветиляторный клиновой).

ЗАКЛЮЧЕНИЕ

Дальнейшие исследования будут направлены на поиск наиболее оптимального расположения приемника Сталкер РТ-02 на стреле экскаватора Hitachi ZX-240 , учитывающего геометрические размеры землеройной машины и технические характеристики приемника.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1 Руководство по эксплуатации Комплексы трассопоисковые «Сталкер 75-02», «Сталкер 15-02», «Сталкер 15-04», «Сталкер 15-04». Паспорт РАПМ.464334.001ПС.
- 2 ГОСТ 2526-70 Гайки шестигранные низкие с уменьшенным размеров «под ключ». Класс точности А. Конструкция и размеры. Взамен ГОСТ 2526-62; дата введ. 01.01.72. М.: Государственный стандарт союза ССР, 1971. 3 с.
- 3 ГОСТ 8328-75 Подшипники роликовые радиальные с короткими цилиндрическими роликами. Типы и основные размеры. Взамен ГОСТ 8328-57; дата введ. 01.01.76. М.: Государственный стандарт союза ССР, 1975. 25 с.
- 4 ГОСТ 1491-80 Винты с цилиндрической головкой классов точности А и В. Конструкция и размеры. Взамен ГОСТ 1491-72; дата введ. 01.01.82. М.: Межгосударственный стандарт, 1981. 5 с.