АНАЛИЗ ЦЕЛЕСООБРАЗНОСТИ КОНСТРУКЦИИ НАТЯЖНОГО УСТРОЙСТВА

М.И. Егорова

Научный руководитель Л.Н.Головина Сибирский Федеральный университет

Для компенсации вытяжки ремней во время работы механизмов используются натяжные устройства, обеспечивающие регулирование межосевого расстояния.

На рис.1 представлена 3D модель натяжного устройства, выполненного в первом семестре в CAD среде SolidWorks.Натяжное устройство предназначено для изменения расстояния между осями электродвигателя и редуктора.

Натяжное устройство состоит из салазок, корпуса, червячной передачи (рис.1)

Рис.1. Натяжное устройство

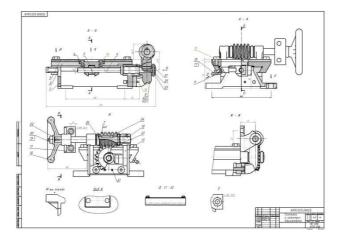


Рис. 2. Чертеж натяжного устройства, выполненный по 3D модели

При работе данного натяжного устройства на салазки устанавливают электродвигатель, и салазки вместе с двигателем скользят по направляющим корпуса, корпус лапами крепится к станине машины. В салазках имеется вырез, в котором закреплен поводок (рис. 3). Через отверстие в боковой стенке корпуса проходит винт, соединенный с квадратной гайкой, вставленной в прорезь поводка (рис.3). На винте на шпонке сидит червячное колесо, которое предохраняется от продольного смещения кольцом. Червячное колесо находится в зацеплении с червяком, сидящим на валу на шпонке.

На этом же валу шпонкой закреплен маховик (рис.3), предназначенный для поворота вала вручную. При повороте маховика поворачивается вал и через червячную передачу движение придается винту. Винт передвинет гайку, а вместе с ней поводок и салазки с электродвигателем за счет чего происходит натяжение ремня. Опорами вала служат кронштейны 1 и 2 (рис.3). Кронштейн 1 имеет два отверстия для крепления болтами к станине машины, кронштейн 2 крепится болтами к корпусу салазок.

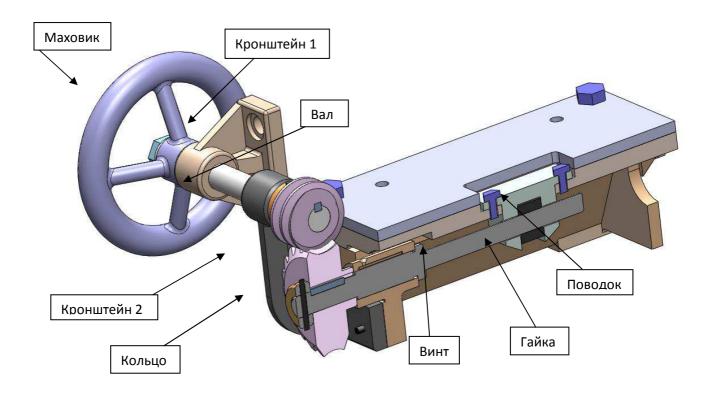
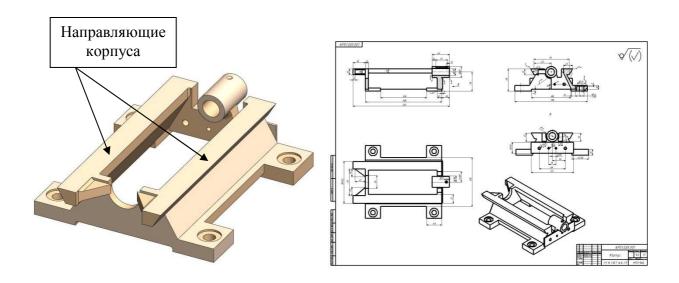
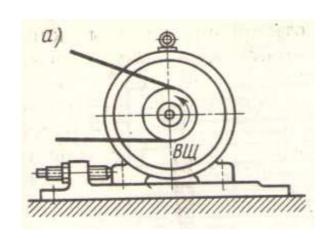



Рис.3. Механизм передвижения салазок

Корпус данной конструкции имеет сложную форму полученную литьем и очень трудоемок в изготовлении. Литье трудоемкий и грязный процесс, целесообразный при серийном производстве. Модель и чертеж корпуса представлены на рисунке 4.


Направляющие корпуса, по которым скользят салазки с двигателем обрабатывается по классу шероховатости Ra 0,8.. Поверхность направляющих должна обеспечить свободное, без лишних затрат на усилие, скольжение салазок с двигателем.

Puc. 4. Модель и чертеж корпуса натяжного устройства, выполненные в CAD среде SolidWorks

Данная конструкция натяжного механизма сложная, трудоемкая в исполнении, дорогостоящая.

Существует большое количество схем натяжных устройств менее сложных, простых в исполнении и доступных по цене. На рисунке 5 а и 56 представлены наиболее распространенные варианты схем натяжных устройств.

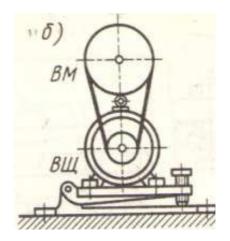


Рис. 5. Распространенные схемы натяжных устройств

На схеме (рис. 5а) регулирование межосевого расстояния осуществляется прямолинейным перемещением электродвигатели по раме с помощью винта.

На схеме (рис. 5б) регулирование межосевого расстояния осуществляется поворотом плиты, на которой расположен электродвигатель.

Вывод: 1. На этапе проектирования необходимо рассматривать и анализировать достоинства и недостатки существующих аналогов.

2. При конструировании необходим предварительный анализ возможных решений и выбор оптимального с учетом условий работы механизма.