ГИДРОТЕРМАЛЬНАЯ ОБРАБОТКА РАСТВОРОВ ФИНИШНОЙ ОЧИСТКИ АФФИНАЖНОГО ПРОИЗВОДСТВА

Солохов Д.А., Кыласов Ф.А.

научный руководитель – д-р. хим. наук, профессор Белоусова Н.В. Сибирский федеральный университет

В настоящее время при разработке новых технологий металлургической переработки сырья, содержащего цветные металлы, и совершенствовании имеющихся технологических схем особое внимание уделяют вопросам наиболее полного

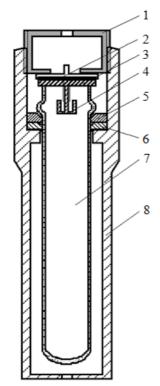


Рисунок 1 - Схема лабораторного автоклава

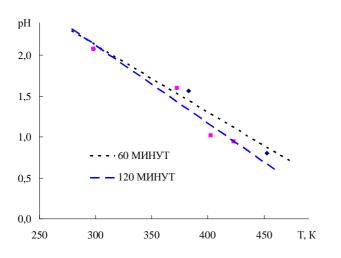
извлечения ценных компонентов и, в частности, металлов платиновой группы (МПГ). Проблема заключается в том, что практически все технологические схемы (и пиро-, и гидрометаллургические), реализуемые на наших предприятиях, характеризуются наличием большого числа переделов, большим объемом незавершенного производства и ощутимыми суммарными потерями МПГ.

Целью данной работы является изучение поведения компонентов растворов финишной очистки аффинажного производства в гидротермальных условиях в плане поиска оптимальных режимов их глубокого обезблагораживания.

Исследуемые процессы проводили автоклаве. изображенном на рис. 1. Его конструкция включает в себя кварцевую или фторопластовую пробирку 7, помещенную в металлический чехол 8 с вертикальными отверстиями для визуального наблюдения за ходом реакций. Положение пробирки фиксируется металлическим 6 и тефлоновым 5 кольцами. Пробирка закрывается фторопластовой крышкой 3 с закрепленной при резьбового помощи соединения фторопластовой чашечкой 4, в которую, при необходимости, загружается один из компонентов реакционной смеси. Для обеспечения герметичности фторопластовую крышку фиксируют прижимным болтом 1. Металлический диск 2 предотвращает вращение крышки герметизации при автоклава.

Объектами исследований были растворы, состав которых представлен в табл. 1. Таблина 1 – Состав солевых растворов (мг/л)

	Tuomingu T Coetus comessis puersopos (MI/II)										
Na	Fe	S	Mg	Cu	Cl	Ni	Zn	Se	Si	Ca	Mn
6400	5900	860	670	100	51	47	46	41	26	26	17
Al	K	Cd	Re	Co	As	Ag	Ir	Rh	Pt	Ru	Os
13	13	13	4,5	1,6	0,63	2,1	1,8	0,6	0,11	0,1	0,078


Как следует из приведенных данных, из металлов платиновой группы в самых больших количествах в растворе присутствует иридий. Причиной этого является кинетическая заторможенность процессов с участием его соединений. В связи с этим количественное восстановление иридия до металлического состояния в нормальных условиях практически невозможно. Гидротермальные (автоклавные) условия позволяют интенсифицировать подобного рода процессы и снять кинетические ограничения.

Гидротермальную обработку солевых растворов проводили в интервале температур 383-453 К. В процессе нагревания шло образование соединений трехвалентного железа с их последующим гидролизом, что фиксировалось визуально по появлению бурого осадка.

Условия экспериментов и результаты представлены в табл. 2 и на рисунках 2, 3.

Таблица	2 _	Результаты по осаждению*	
таолина	\angle $-$	гезультаты по осажлению	

Материал автоклава	Температура, К	Время, ч	Масса осадка, г	рН	Е, мV
кварц	373	2	0,047	1,6	396,1
PTFE	383	1	0,092	1,65	423,5
PTFE	383	1	0,055	1,56	422,2
PTFE	383	4	0,01	-	-
кварц	403	2	0,1	1,02	438,2
кварц	423	2	0,3	0,99	474,3
PTFE	423	2	0,1	0,94	431
PTFE	453	1	0,111	0,75	497
PTFE	453	1	0,14	0,8	492,4
PTFE	453	4	0,2	0,6	513
PTFE	453	4	0,2	0,63	514,8
* Исходный раствор	298	-	-	2,08	394,6

PH 2,0 1,5 1,0 0,5 0,0 150 200 t, MH

Рисунок 2 – Зависимость pH раствора от температуры

Рисунок 3 – Кинетическая кривая изменения рH при 453 K

Анализ полученных данных позволяет прийти к следующим выводам:

- 1. Увеличение температуры приводит к увеличению массы осадка и уменьшению значений рН.
- 2. Наибольшее изменение показателей осаждения при 453 К происходит в первые 90 мин.

Кроме того, можно отметить, что увеличение температуры сопровождается увеличением крупности осадка, что позволяет осуществлять разделение фаз декантацией.

Дальнейшие планы включают изучение перераспределения металлов между жидкой и твердой фазами после осаждения и условий восстановления МПГ.