ДРОССЕЛЬНОЕ РЕГУЛИРОВАНИЕ СКОРОСТИ ОПУСКАНИЯ СТРЕЛЫ ГРУЗОПОДЪЕМНОГО МЕХАНИЗМА.

Иванов И. А.,

научный руководитель доцент канд. техн. наук Мельников В. Г. Сибирский федеральный университет

Рассматривается вопрос дроссельного регулирования скорости опускания стрелы грузоподъемного механизма под действием груза и приведенных к его центру массы весов всех подвижных элементов системы с целью установления оптимального диаметра дроссельного отверстия в зависимости от грузоподъемности, подачи насоса, параметров гидроцилиндра стрелы и кинематической схемы грузоподъемного механизма.

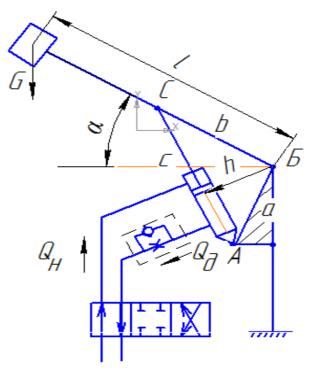


Рисунок 1.

При опускании стрелы рабочая жидкость от насоса через гидрораспределитель подается в штоковую полость гидроцилиндра, а из поршневой, через дроссель, идет на слив в бак. Дроссель создает в сливной магистроли сопротивление и ограничивает скорость опускания грузоподъемного механизма.

Оптимальная скорость опускания поршня гидроцилиндра, при которой обеспечивается неразрывность потока рабочей жидкости в штоковой полости гидроцилиндра:

$$v_{\Pi} = \frac{Q_{H}}{S_{\Pi}}, \qquad (1)$$

где: $v_{\rm n}$ – скорость поршня; $Q_{\rm h}$ – подача насоса; $S_{\rm m}$ – штоковая площадь гидроцилиндра. При этом расход рабочей жидкости из поршневой полости через дроссель:

$$Q_{\pi} = v_{\Pi} \cdot S_{\Pi} \,, \tag{2}$$

$$Q_{\mathrm{A}} = \frac{Q_{\mathrm{H}} \cdot S_{\mathrm{II}}}{S_{\mathrm{III}}},\tag{3}$$

$$Q_{\pi} = Q_{\mathrm{H}} \cdot \psi \,, \tag{4}$$

где $Q_{\rm d}$ – объем рабочей жидкости вытесняемый поршнем через дроссель; $S_{\rm n}$ – площадь поршня гидроцилиндра; ψ – отношение площади поршневой полости к площади штоковой полости.

Расход через дроссель определяется из выражения:

$$Q_{\rm A} = \mu \cdot f \cdot \sqrt{\frac{2\Delta P}{\rho}} \,, \tag{5}$$

где: μ – коэффицент расхода; f – площадь отверсти дросселя; ΔP – перепад давления. Перепад давления определяетс из выражения:

$$\Delta P = P^{\Pi} - P^3 \,, \tag{6}$$

где P^{Π} – давление перед дросселем; P^{3} – давление за дросселем.

Давление P^{π} в поршневой полости гидроцилиндра и перед дросселем зависит от длины стрелы l, угла наклона стрелы α , приведенного веса G и плеча h (перпендикуляр к оси гидроцилиндра, проходящий через ось вращения стрелы) и диаметра поршня гидроцилиндра S_{π} .

Плечо h определяется из треугольника АБС, где длины сторон «а» и «b» величины постоянные, а сторона «с» — переменная и зависит от хода штока гидроцилиндра и для каждого положения может быть определена графически из кинематической схемы механизма подъема стрелы.

Давление, создаваемое грузом и приведенным весами подвижных элементов, без учета сил трения в гидроцилиндре и шарнирах системы:

$$P^{\Pi} = \frac{G \cdot l \cdot \cos \alpha}{S_{\Pi} \cdot h} \,, \tag{7}$$

Плечо h определяется из полупериметра треугольника АБС:

$$h = \frac{2 \cdot \sqrt{P \cdot (P - a) \cdot (P - b) \cdot (P - c)}}{c},$$
 (8)

где: Р – полупериметр стороны треугольника АБС.

$$P = \frac{a+b+c}{2} \,, \tag{9}$$

Значение h из (8) подставляем в (7) получим:

$$P^{\Pi} = \frac{G \cdot l \cdot \cos \alpha \cdot c}{S_{\Pi} \cdot 2 \cdot \sqrt{P \cdot (P - a) \cdot (P - b) \cdot (P - c)}},$$
(10)

Формулу (10) можно привести к виду:

$$P^{\Pi} = \frac{G}{S_{\Pi}} \cdot i \,, \tag{11}$$

где: i – передаточное число механизма подъема (опускания) стрелы.

$$i = \frac{l \cdot \cos \alpha}{h} = \frac{l \cdot \cos \alpha \cdot c}{2 \cdot \sqrt{P \cdot (P - \alpha) \cdot (P - b) \cdot (P - c)}},$$
(12)

Давление за дросселем P^3 определяется суммированием потерь напора по длине и местных потерь каждого элемента гидросистемы:

$$P^{3} = \sum_{1}^{k} \left(\lambda_{i} \cdot \frac{l_{i}}{d_{i}} + \xi_{i} \right) \cdot \frac{v_{i}^{2}}{2} \cdot \rho + d \cdot \frac{v_{k}^{2}}{2} \cdot \rho = D, \tag{13}$$

где: v_i — средняя скорость потока в каждом участке; ξ_i и l_i — коэффициенты сопротивления трения и местных сопротивлений на каждом участке; $v_{\rm K}$ — средняя скорость потока на выходе в бак; α — коэффициент кинетической энергии.

В уравнение (6) подставим значения P^{Π} и P^{3} из (11) и (13)получим:

$$\Delta P = \frac{G}{S_{\Pi}} \cdot i - D \,, \tag{14}$$

В уравнении (5) произведем замены ΔP (14) и $Q_{\rm д}$ (2), получим следующее выражение:

$$Q_{\rm H} \cdot \psi = \mu \cdot f \cdot \sqrt{\frac{2 \cdot (\frac{G}{S_{\rm II}} \cdot i - D)}{\rho}}, \tag{15}$$

Коэффициент расхода для малого круглого отверстия с острой кромкой для значений R_e $1.5 \cdot 10^4$... 10^6 можно принимать равным μ =0,6 [2]. После соответствующих преобразований находим диаметр отверстия d:

$$d = \frac{\sqrt{Q_{\rm H} \cdot \psi}}{\sqrt[4]{\left(\frac{G}{S_{\rm II}} \cdot i - D\right)}}$$

$$(16)$$

Выводы:

- Уравнение (16) позволяет установить взаимосвязь диаметра дроссельного отверстия, подачи насоса, грузопоъемности, передаточного числа механизма, потерь давления за дросселем и на стадии проектирования выбирать оптимальное значение параметров гидропривода и кинематическую схему опускания стрелы грузоподъемного механизма.
- 2. При проектировании кинематической схемы гидропривода механизма опускания стрелы желательно обеспечить постоянное передаточное число

i,тогда давление перед дросселем P^{Π} и диаметр отверстия дросселя d будет постоянными величинами.

Список литературы:

- 1. Бошта Т. М. и др. Объемные гидравлические приводы. М., Машиностроение, 1968, 628 с.
- 2. Бутаев Д. А. и др. Сборник задач по машиностроительной гидравлики. М., Машиностроение, 1972, 472 с.