ПРЕДЛОЖЕНИЯ ПО МОДЕРНИЗАЦИИ ПРИВОДНОЙ ЧАСТИ САМОБАЛАНСНОГО КОКСОВОГО ГРОХОТА

Иванов А.С.

научный руководитель канд. техн. наук Шигин А.О. Сибирский федеральный университет

Приводная часть грохота, которая задает ему движение, разработана более 30 лет назад. С 1978 года технологии сделали большой шаг вперед, сейчас существует выбор среди вибраторов, которые способны воспроизводить колебания в любых условиях, в условиях большой запыленности и в условиях повышенных температур. Кроме этого, фирмы, занимающиеся изготовлением и продажей вибраторов, предоставляют различные услуги по монтажу, техническому обслуживанию и дают гарантию на свою продукцию, следовательно, в случае неполадок, затраты на ремонт будут намного меньше, нежели на ремонт самодельного вибропривода.

Учитывая эти факты, нами был подобран современный вибратор MVSI 10/10000 - S90, компании Italvibras (Puc. 1).

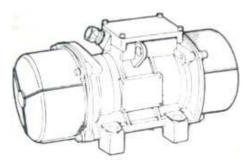


Рисунок 1 – Вибратор MVSI 10/10000 - S90, компании Italvibras

Серия MVSI S90 представлена на рынке серией электровибраторами с диапазоном значений центробежной силы от 0,04 кН до 220кН.

Механическая защита обеспечена в соответствии со стандартами IES 529-19899, CEI 70.1, EN 60529, CENELEC HD 365 и NFC 20-010 для предотвращения проникновения пыли и жидкостей, а также в целях обеспечения достаточной ударопрочности. Данный электровибратор приспособлен для работы в условиях высоких температур благодаря вакуумной герметизации или «капельной» пропитке обмотки. Может быть установлен в любом положении без ограничений.

Для того, чтобы колебательная сила была направлена вдоль одной линии и вызывала возвратно-поступательное колебание в незатухающем синусоидальном режиме, необходима установка двух электровибраторов с противоположными направлениями вращения. Электровибраторы будут крепиться к стенкам короба с противоположных сторон.

Смазка электровибраторов производится при их сборке на заводе; дополнительной смазки в течение срока эксплуатации не требуется. Специальная система смазки со сложной системой каналов и камерами точно рассчитанных размеров в сочетании с применением специальной синтетической консистентной смазки обеспечивает возможность смазки вибраторов двумя способами:

- долговечная смазка без периодического обслуживания не требует обслуживания до момента полной замены смазки после 5000 часов работы.
- периодическое смазывание смазка узлов и деталей производится периодически через специальные масленки. Метод периодического смазывания рекомендуется для вибраторов, работающих в особо тяжелых условиях, например, при круглосуточной

непрерывной работе или при эксплуатации в условиях высоких температур окружающей среды (>40 °C).

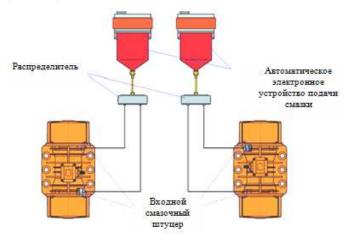


Рисунок 2 – Автоматическая система смазки

Излишняя смазка выдавливается из системы каналов в отсек эксцентриковых грузов.

Смазка Kluber STABURAGS NBU 8 EP - это консистентные смазки на базе комплексного бариевого мыла и минерального масла. Они успешно используются в качестве долговечной смазки для подшипников, работающих под высокой нагрузкой. Экономичное расходование смазки достигается путем добавления загустителя.

В ходе эксплуатации грохота, нередко возникает такая проблема, как лопнувшие опорные пружины. В результате анализа конструкции грохота, нами было установлено, что количество пружин, которое сейчас находится в работе, не справляется с нагрузками, поэтому необходимо увеличить количество пружин до 12 шт.

В процессе работы грохота на пружины действуют и поперечные колебания, которые могут стать причиной выхода их из строя. Поэтому нами было принято решение установить на каждую опору ограничитель.

Ограничитель - стержень для направления перемещений короба, установленный с зазором, учитывающим величину поперечных колебаний (Рисунок 3).

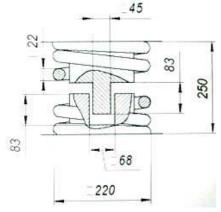


Рисунок 3 – Схема ограничителя

Основным рабочим элементом в грохоте для разделения фракций на нужны величины являются сита, верхнее - ячейка с диаметром 70 мм , нижнее - ячейка с диаметром 35 мм. Верхнее сито изготавливается из черного металла (Ст. 3 конструкционная углеродистая), а нижнее из 12X18H9T (коррозионно-стойкая), срок службу их составляет 1,5-2 мес и 6-8 мес соответственно.

В ходе работы грохота интенсивному изнашиванию подвергаются металлические сита. Просеивающие поверхности изнашиваются в результате действия различных

процессов, происходящих одновременно: истирания (абразивного износа), ударного воздействия зёрен материала (ударного износа), циклических нагрузок в элементах сита, его вибраций и усталостных повреждений (усталостного износа).

Недостатками металлических сит являются: быстрый износ сит (верхние 1,5-2 месяца, нижние 6-8 месяцев); забиваемость сит; частая остановка грохота для замены сит.

Преимущества полиуретановых сит.

Абразивная стойкость полиуретановых сит превышает, абразивную стойкость нержавеющей стали в 7 –9 раз, они работают в 3 –4 раз дольше резиновых сит. Поэтому срок службы полиуретановых сит – от 1 года до 2 лет в зависимости от абразивных свойств сортируемого материала и нагрузки на грохот.

Благодаря эластичности материала сита, большой амплитуде колебаний и специальной форме отверстий, эти сита имеют производительность на 15-20 % больше, чем металлические, и на 10-12 % больше, чем резиновые.

Снижена забиваемость сит благодаря трапецеидальной в сечении форме отверстий, расширяющихся книзу (эффект самоочистки).

Точная сортировка за счёт сохранения размеров ячеек сита.

Высокая скорость прохождения материала.

Высокая износостойкость и защита подситника от износа.

Модульный принцип сборки просеивающих поверхностей, позволяющий при эксплуатации грохота уменьшить затраты на замену износившихся панелей и облегчить их монтаж и демонтаж.

Уменьшение шума при работе оборудования (на 5...20 дБ в зависимости от площади грохочения).

Спроектированная схема привода передвижения тележки, представленная на рисунке 4, состоит из следующих компонентов:

Электродвигатель из серии МТКН;

Редуктор ВК-350;

Зубчатая муфта М3-2-Н35;

Упругая втулочно-пальцевая муфта с тормозным шкивом;

Зубчатая муфта МЗП-2;

Тормоз типа ТКГ – 160;

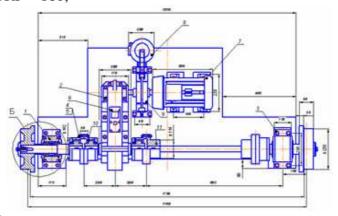


Рисунок 4 – Привод передвижения тележки грохота

В результате предложенных разработок по модернизации приводной части самобалансного коксового грохота увеличится надежность и эффективность его работы. Кроме того снизятся затраты на ремонт и техническое обслуживание