РАЗРАБОТКА МЕТОДИКИ ПОСТРОЕНИЯ ПРОГНОЗНЫХ КАРТ НА ОСНОВЕ СТАТИСТИЧЕСКОГО АНАЛИЗА ФИЛЬТРАЦИОННО-ЕМКОСТНЫХ СВОЙСТВ КОЛЛЕКТОРА

Волкова А.А.,

научный руководитель д-р техн. наук, профессор Поздняков В.А. Сибирский Федеральный Университет

В последние годы как в России, так и за рубежом растёт интерес к исследованиям рассеянной компоненты волнового поля как важного критерия при поисках ловушек углеводородов в породах с повышенной трещиноватостью. Причём в последнее время этот интерес постоянно возрастает, о чём говорит, в частности, организация специальных сессий на ведущих конференциях европейского и американского общества геофизиков, а также выпуск ведущих геофизических журналов, посвящённых взаимодействию сейсмических рассеянных волн с микроструктурой, в том числе и флюидонасыщенной.

Рассеянная компонента сейсмической записи возникает в результате взаимодействия падающей волны с мелкомасштабными (меньше 0,5 доминирующей длины волны) неоднородностями, такими как разломы (дифракция), зоны повышенной трещиноватости (рассеяние) и другие структурные неоднородности [3].

Идея использовать незеркальную (рассеянную) компоненту волнового поля для изучения зон аномальной трещиноватости возникла около 20 лет назад [5]. В ООО «РН-КрасноярскНИПИнефть» для выделения рассеянных волн используется метод фокусирующих преобразований, математическая и алгоритмическая основа метода были разработаны В. А. Поздняковым. Метод ориентирован на выделение рассеянной составляющей волнового поля путём асимметричного суммирования данных многократного перекрытия [1-4].

Цель работы состоит в предложении методики построения прогнозных карт на основе статистического анализа фильтрационно-емкостных свойств коллектора и энергии рассеянных волн.

Для достижения цели поставлены следующие задачи:

1. Проанализировать корреляционную матрицу с параметрами объектноориентированных миграционных преобразований и фильтрационно-емкостных свойств.

2. Предложить несколько вариантов уравнений для расчета дебита нефти в межскважинном пространстве.

3. Получить и проанализировать карты дебита нефти, пористости и проницаемости.

После анализа результатов применения метода фокусирующих преобразований, в качестве рабочих вариантов были выбраны 3 куба энергии рассеянных волн с базой пунктов взрыва и пунктов приема 1600 метров и с различными апертурами: 1100-1300 метров, 800-1000 метров и 800-1300 метров. В работе использовались временные срезы кубов энергии рассеянных волн в окне продуктивных рифейских отложений.

Параметры фильтрационно-емкостных свойств представлены следующими данными: дебит газа, дебит нефти, проницаемость, коэффициент общей пористости (Кп_{общ}), коэффициент вторичной пористости (Кп_{вт}), отношение давлений в пласте и на забое (Р_{пл}/Р_{заб}).

Из имеющихся данных фильтрационно-емкостных свойств по 16 скважинам и значений энергии рассеянных волн, снятых в точках этих скважин, была построена корреляционная матрица (табл.).

Апертура, м	Дебит газа, тыс. м ³ /сут	Дебит нефти, м ³ /сут	Проницаемость, мД	Кп _{общ} , %	Кп _{вт} , %	Р _{пл} /Р _{заб} , Мпа
1100-1300	0,06	0,46	0,66	0,7	0,71	-0,76
800-1000	0,74	0,69	0,64	0,47	0,48	-0,67
800-1300	0,03	0,46	0,66	0,69	0,69	-0,68

Корреляционная матрица

Для линейной корреляции дебита газа с энергией рассеянных волн недостаточно данных выборки. Несмотря на то, что отношение давлений хорошо коррелирует с энергией рассеянных волн, необходимо уточнить физическую природу этой зависимости.

Наблюдаются значимые корреляционные связи энергии рассеянных волн с дебитом нефти, проницаемостью и коэффициентами пористости. Связи с коэффициентами пористости практически одинаковые в связи с тем, что коэффициент вторичной пористости получен, как разность единицы с коэффициентом общей пористости. Коэффициент вторичной пористости рассматриваться в работе не будет.

Получены уравнения линейной зависимости для дебита нефти, общей пористости и проницаемости от энергии рассеянных волн.

Для апертуры 1100-1300 м:		D = 132,13 FRass – 182,42	$R^2 = 0,78$
$K\pi = 0,64 \text{ FRass} + 0,98$	$R^2 = 0.81$	Кпр = 393,22 FRass – 591,42	$R^2 = 0.43$
Для апертуры 800-1	000 м:	D = 113,08 FRass - 209,26	$R^2 = 0,66$
$K\pi = 0,45 \text{ FRass} + 1,02$	$R^2 = 0,82$	Кпр = 419,86 FRass – 840,55	$R^2 = 0.41$
Для апертуры 800-1	300 м:	D = 202,3 FRass – 205,22	$R^2 = 0,75$
$K\pi = 1,04 \text{ FRass} + 0,79$	$R^2 = 0,79$	Кпр = 613,98 FRass – 680,28	$R^2 = 0.44$
Где D – дебит не	ефти; FRass	– значение энергии рассеянных	волн; Кп –
			_ 2

коэффициент общей пористости; Кпр – коэффициент проницаемости; R² – коэффициент достоверности аппроксимации.

Также были получены уравнения множественной линейной регрессии для куба энергии рассеянных волн с различными апертурами.

Для апертуры 1100-1300 м: D = 186,6 F	Rass - 85,1 Кп - 101,1	R=0,93
D = 10,8 FRass + 0,19 Кпр - 11,6	Ŕ=0,96	
D = 27,4 FRass - 0,4 Кп + 0,1 Кпр – 29	Ŕ=0,94	
Для апертуры 800-1000 м: D = 154 FRa	ss - 99,4 Кп - 90,7	Ŕ=0,903
D = 4,8 FRass + 0,17 Кпр + 5,6	Ŕ=0,934	
D = 11,8 FRass + 20,1 Кп + 0,1 Кпр - 53,8	Ŕ=0,919	
Для апертуры 800-1300 м: D = 257,6 FF	Rass - 60 Кп - 148,6	Ŕ=0,887
D = 19,7 FRass + 0,19 Кпр - 17,7	Ŕ=0,956	
	$\dot{\mathbf{n}}$ 0.042	

 $D = 50.3 \text{ FRass} - 3.2 \text{ Km} + 0.1 \text{ Kmp} - 38.5 \qquad \hat{R} = 0.943$

Где Ќ – коэффициент множественной линейной корреляции.

На рисунках 1-3 представлены лучшие прогнозные карты для пористости, проницаемости и дебита нефти. Перспективные зоны улучшенных коллекторских свойств выделены черным пунктиром.

 Concordenance to conception by reprovidence to the state
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0

Рис. 1 Прогнозная карта пористости (%): Кп = 1,04 FRass + 0,79

Рис. 2 Прогнозная карта проницаемости (мД): Кпр = 419,86 FRass – 840,55

Рис. 3 Прогнозная карта дебита нефти (м³/сут): D = 50,3 FRass - 3,2 Кп + 0,1 Кпр - 38,5

Были проанализированы статистические связи энергии рассеянных волн с фильтрационно-емкостными свойствами коллектора. Предложены уравнения для расчета дебита нефти, пористости и проницаемости через значения энергии рассеянных волн. Получены и проанализированы прогнозные карты дебита нефти, пористости и проницаемости.

В дальнейшем планируется опробовать предложенную методику построения прогнозных на других лицензионных участках Восточной Сибири; проверить методику при наличии других сейсмических атрибутов; а также сравнить полученные прогнозные карты с картами геологов.

Литература

- Поздняков, В.А. Модельные исследования алгоритма миграции исходных сейсмозаписей при непродольных наблюдениях / В.А. Поздняков, С.И. Шленкин // Геология месторождений горючих полезных ископаемых, их поиски и разведки – Пермь, 1986. – С. 42-53.
- Поздняков, В.А. Объектно-ориентированная технология создания сейсмогеологических моделей в отраженных и рассеянных волнах / В.А Поздняков, С.С. Худяков // Журнал Сибирского федерального университета. – 2011. – Т.4. – № 4. – С. 419-428.
- 3. Поздняков, В.А. Выделение зон повышенной трещиноватости в карбонатных отложениях Восточной Сибири / В.А. Поздняков, В.В. Шиликов, А.С. Мерзликина // Нефтяное хозяйство. 2011. № 7.– С. 86-88.
- 4. Поздняков, В.А. Интенсивность рассеянных волн новый сейсмический атрибут для прогноза фильтрационно-емкостных свойств нефтенасыщенного коллектора / В.А Поздняков // Докл. РАН. 2005. Т. 404. С. 34-40.
- 5. Тарасов, Ю. А. Трансформация волнового поля по алгоритму ФПВ / Ю. А. Тарасов, С.И. Шленкин, И.Н. Бусыгин [и др.] // ВИНИТИ. –1985. № 3053. 44 с.