СТАБИЛИЗАЦИЯ СОСТАВА ФЕРРОСФЕР МЕТОДОМ ЭЛЕКТРОСТАТИЧЕСКОЙ СЕПАРАЦИИ

Чудаков А. В.

научный руководитель д-р хим. наук, проф. Аншиц А. Г. Институт химии и химической технологии СО РАН Сибирский Федеральный университет

Введение

Железосодержащие микросферы энергетических зол (ферросферы) образуются в результате высокотемпературных термохимических преобразований сульфидов, силикатов и карбонатов железа, входящих в состав минеральной части сжигаемых на ТЭС углей. Содержание ферросфер в летучих золах достигает 18 мас. %.

Основным компонентом химического состава ферросфер является железо. Содержание железа (в пересчете на Fe_2O_3) для ферросфер различных ТЭС неодинаково и колеблется в пределах 35-97 мас.% Fe_2O_3 [1]. С уменьшением содержания железа в ферросферах возрастает содержание алюминия и кремния. Фазовый состав ферросфер составляет (вес.%): шпинель — 7-67; гематит — 10-72; кварц — 0,15-1,5; аморфный остаток — 15-36.

Как показано в работах [2-4], железосодержащие микросферы энергетических зол (ферросферы) проявляют значительную каталитическую активность в реакции окислительного превращения метана с образованием CO, CO_2 , и не ограничивается процессами глубокого окисления - они активны также и в реакции окислительной конденсации метана (ОКМ), с образованием этана и этилена. При этом обнаружено, что модифицированные ферросферы по уровню активности и селективности образования C_2 — углеводородов приближаются к лучшим синтетическим системам (степень превращения метана до 24 %, селективность по C_2 до 70 %) [5].

Для получения на основе ферросфер летучих зол эффективной каталитической системы необходима оптимизация минерально-фазового и химического составов. Такая модификация, в первую очередь, должна быть направлена на увеличение количества и доступности активной фазы. Хотя в работах [4,5] были высказаны предположения о возможной природе активных фаз, обеспечивающих протекание ОДМ на ферросферах, общая картина формирования минерально-фазового состава ферросфер и его связь с активностью и селективностью не были окончательно выяснены. Основная трудность состоит в том, что используемые образцы, выделенные из магнитных концентратов энергетических зол, представляют собой сложную, многокомпонентную систему на основе $CaO-Fe_2O_3-Al_2O_3-SiO_2$.

Целью работы являлась очистка ферросфер летучих зол от алюмосиликатной составляющей методом электростатической сепарации.

Экспериментальная часть

Узкая фракция ферросфер была получена из лабораторной пробы магнитного концентрата от пылевидного сжигания бурого угля марки Б2 Канско-Ачинского бассейна Березовского разреза с использованием 2-х стадийной схемы разделения, включающей:

- 1. Гранулометрическую классификацию на ситах 0,4; 0,2; 0,16; 0,1; 0,063 и 0.05 мм на виброприводе ВП 220В.
- 2. Магнитное разделение на промышленном сепараторе (Т138) при различной напряженности магнитного поля.

Полученная немагнитная фракция с внутрилабораторной маркировкой S1 MF— 0,1+0,063 380-220В была выбрана в качестве экспериментального материала.

Разделение ферросфер проведено на электростатическом барабанном сепараторе ЭЛКОР-1 («Невотех», Россия). Контроль произведен посредством оптической и электронной микроскопии на микроскопах Axioskop 40 («Carl Zeiss», Германия) и ТМ1000 (Япония).

Метод электростатической сепарации, выбор режима работы.

Электростатическая сепарация проводилась на электростатическом барабанном сепараторе ЭЛКОР-1 принципиальная схема приведена на (рис.1).

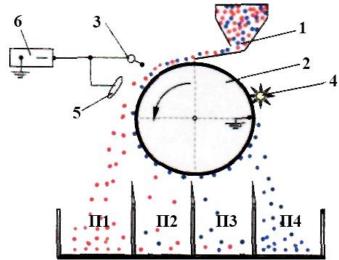


Рисунок 1. Принципиальная схема барабанного электростатического сепаратора ЭЛКОР-1 («Невотех», Россия)

Исходный материал из бункера I поступает на поверхность вращающегося барабана (осадительного электрода) 2, с которого выносится в зону коронного разряда, где частицы приобретают заряд коронирующего электрода 3. Контактируя с осадительным электродом, каждая частица разряжается. Частицы с высокой электропроводностью электрической и центробежными силами сбрасываются с барабана и направляются в отсек $\Pi 1$. Частицы с меньшей электропроводностью медленнее отдают свой заряд и поэтому налипают на барабане, где затем удаляются с его поверхности электрической очисткой и вращающейся щеткой 4 в отсек $\Pi 4$. В средние отсеки $\Pi 2$ и $\Pi 3$ поступает промежуточный продукт, состоящий из проводящих и непроводящих частиц. На электроды 3 и 5 высокое напряжение подается от источника постоянного тока 6 напряжением до 40 кВ.

На первой стадии разделения основной задачей являлось максимально возможное концентрирование глобул с повышенным содержанием алюмосиликатной компоненты в продукте 4 (непроводящий продукт). Для этого были выполнены три перечистки продуктов 1-3.

После того как содержание частиц обогащенных алюмосиликатной компонентой стабилизировалось в продукте 3, последующие две перечистки осуществлялись только с участием продуктов 1 и 2, при этом, для повышения эффективности разделения была снижена скорость подачи материала (частота вращения барабанного электрода снижена до 40 об/мин). Наиболее эффективные режимы разделения приведены в таблице 1.

Таблица 1. Режимы разделения ферросфер

Режим	E^1 ,	L_1/L_2^2	Полярность	Подача	Положение	Полож
разделения	κВ	, cm	материала, электродов ³ ,		ение	
				об/мин	градусы	$\mathrm{H}\Pi^4$
№ 1	15	5/5	Положительная	70	0/45	7;4;4
№ 2	15	5/-	Отрицательная	95	0/-	7;4;4

¹Напряженность электростатического поля; ²Расстояние от одинарного/двойного коронирующего электрода до осадительного электрода; ³Положение одинарного/двойного коронирующего электрода относительно горизонтали; ⁴Положение направляющих приемника

Результаты и обсуждение

В результате разделения получены продукты отличающиеся электропроводностью (диэлектрической проницаемостью и поляризуемостью), проводящие свойства которых закономерно ослабевают при переходе от продукта 1 к 4. Выходы продуктов отражены в таблице 2.

Таблица 2. Выход продуктов

Режим разделения	-	Потери, %			
	1	2	3	4	
№ 1	67,4	28,9	0,6	2,9	0,3
№ 2	16,4	56,0	9,6	15,5	2,5

Продукты электростатической сепарации исследованы с помощью оптической микроскопии. Для представительного анализа оптических снимков полученных продуктов использовалась выборка не менее чем из 500 глобул. На основе полученных данных сделан вывод о том, что режим разделения № 2 лучше подходит для выделения целевого продукта. Все исследования в дальнейшем проведены на продуктах полученных в данном режиме разделения.

Данные оптической и электронной микроскопии позволяют оценить распределение алюмосиликатной составляющей в составе глобул, которая может находиться как на поверхности (рис. 2 б, в), так и внутри (рис. 2 а).

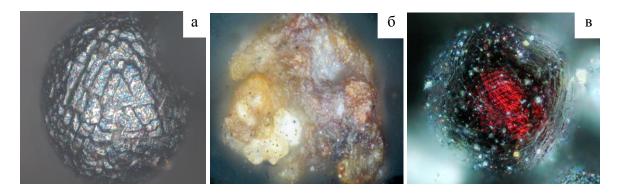


Рисунок 2. Распределение алюмосиликатной части в глобулах: a – внутри, б, в – на поверхности.

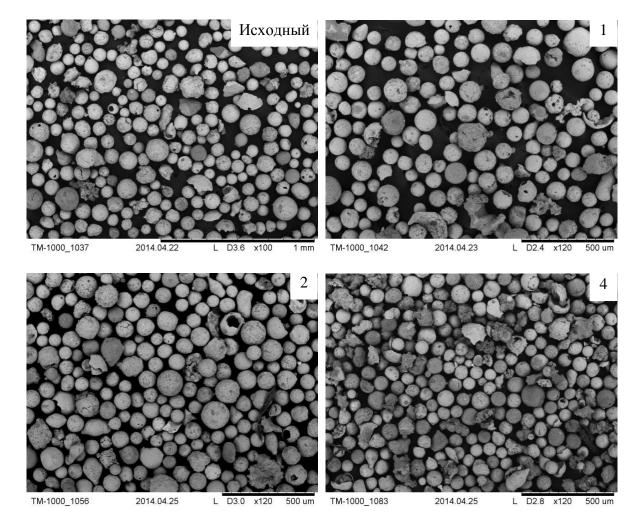


Рисунок 3 Данные электронной микроскопии поверхности продуктов разделения (режим № 2).

По снимкам электронного микроскопа посчитаны выходы (таб.3) сферических глобул (рис. 2а), сферических с алюмосиликатной частью распределенной по поверхности (рис. 2в) и не сферических, представляющих собой шлаковые частицы со значительным содержанием кремния и алюминия (рис. 2б). Расчет произведен с учетом взаимосвязи количества отраженных электронов и химического состава поверхности. Так от материалов с меньшей атомной массой (кремний, алюминий) количество отраженных электронов будет меньше, чем от материала с большей атомной массой (магнетит, гематит) и объект будет выглядеть темнее. В нашем случае графитовая подложка выглядит черной.

Таблица 3. Процентное распределение алюмосиликатной части в продуктах сепарации.

	1 1		1 ' ' 1 '		
Продукт	Сферические, %	Сферические с	Не сферические с		
		алюмосилик.	алюмосилик.		
		компонентой, %	компонентой, %		
Исходный	87	6	7		
1	91	5	4		
2	90	5	5		
3	73	15	12		
4	56	23	21		

Из таблицы 3 видно, что продукты 1 и 2 содержат значительно меньше алюмосиликатной компоненты, чем продукты 3 и 4. Данный факт подтверждается данными химического анализа (таб.4).

Таблица 4. Данные химического анализа исходного материала и продуктов разделения.

Продукт	Химический состав, мас.%									
	SiO ₂	Al ₂ O ₃	Fe ₂ O ₃	CaO	MgO	Na ₂ O	K ₂ O	TiO ₂	MnO	SO ₃
Исходный	4,08	1,62	84,69	8,92	0,78	0,18	0,05	0,20	0,15	0,96
1	1,22	1,25	90,91	4,84	1,00	0,22	0,07	0,15	0	0,22
2	1,15	1,25	90,91	4,66	1,05	0,20	0,09	0,30	0	0,38
3	2,23	1,89	86,31	6,70	0	0,25	0,09	0,20	0	0,32
4	4,20	3,20	73,53	13,46	1,05	0,30	0,09	0,35	0	0,42

Результаты работы:

- 1. Проведен подбор режимов работы электростатического барабанного сепаратора «ЭЛКОР-1» для очистки ферросфер летучих зол от алюмосиликатной составляющей.
- 2. С использованием методов оптической и электронной микроскопии, химического анализа показана возможность стабилизации состава ферросфер методом электростатической сепарации.

Работа выполнена при частичной финансовой поддержке Междисциплинарного интеграционного проекта CO РАН №139.

Список используемой литературы

- 1. Кизильштейн Л.Я., Дубов И.В., Шпицглуз А.Л., Парада С.Г. Компоненты зол и шлаков ТЭС М, Энергоатомиздат. 1995, 176 с.
- 2. Vereshchagin S.N., Anshits N.N., Salanov A.N., Sharonova O.M., Vereshchagina T.A., Anshits A.G. // Chemistry for Sustainable Development, 2003. 1: p. 303-308.
- 3. Wang S. // Environmental Science & Technology, 2008. **42**(19): p. 7055-7063.
- 4. Fomenko E.V., Kondratenko E.V., Salanov A.N., Bajukov O.A., Talyshev A.A., Maksimov N.G., Nizov V.A., Anshits A.G. // Catalysis Today, 1998. 42(3): p. 267-272.
- 5. Fomenko E.V., Kondratenko E.V., Sharonova O.M., Plekhanov V.P., Koshcheev S.V., Boronin A.I., Salanov A.N., Bajukov O.A., Anshits A.G. // Catalysis Today, 1998. **42**(3): p. 273-277.