Introduction. Models	Before modeling 000	Preliminary results	Conclusion

Modeling of Krasnoyarsk Public Transportation Network in a "Smart" City

¹Michael G. Sadovsky

in cooperation with E.Bukharoiva, A.Tokarev & O.Yakubailik

¹Institute of computational modeling SB RAS

September 27, 2018

Introduction. Models	Before modeling	Preliminary results 00000	Conclusion
Out-line			

Introduction. Models Flow models

2 Before modeling• General issues

Preliminary results
 SLRN graph indicators

• Current shortages

4 Conclusion

Introduction. Models •00	Before modeling	Preliminary results	Conclusion
Flow models			
"Hydraulic" models			

These model stipulate that

- streets, lanes and roads (SLRN) is a kind of a pipeline web;
- transport traffic is a liquid flow in the pipeline;
- a web might be rather complicated.

Introduction. Models ○●○	Before modeling 000	Preliminary results	Conclusion
Flow models			
"Hvdrodvnamic" m	odels		

These models are similar to those mentioned above, while the transportation flows are described by hydrodynamics eautions (PDEs, mainly).

Crucial disadvantages of HD models

- incompressability of transport flow;
- continuity of flow;
- strong correlations in microfluxes, as compared to hydrodynamics.

Introduction. Models	Before modeling	Preliminary results	Conclusion
Flow models			
Graph models			

These are simulation models where

- SLRN is presented by a graph (very smart presentation);
- traffic is simulated as a "walking" of randomly moving particles;
- a lot can be retrieved and understood over a graph pattern, before any simulation.

Current models have serious disadvantage: a single-particle approximation is implemented (= deliberate rejection of an interaction implementation) of the "particles" in transportation flow.

Introduction. Models	Before modeling ●00	Preliminary results	Conclusion
General issues			
Specific area of S	LRN		

Specific area of SLRN $\langle SS \rangle$ is the **area** of all streets, lanes, roads determined *per capita* in a city.

Specific area of SLRN in some cities

- New York is the champion: $\langle S
 angle = 135 \, {
 m m}^2$;
- Paris is suspected to have some problems: $\langle S \rangle = 36.6 \, {\rm m}^2$;
- Hong Kong is the leader in South-East Asia, $\langle S
 angle = 47 \, {
 m m}^2;$

Introduction. Models	Before modeling o●o	Preliminary results 00000	Conclusion
General issues			
Specific area of S	LRN		

Specific area of SLRN $\langle SS \rangle$ is the area of all streets, lanes, roads determined *per capita* in a city.

Specific area of SLRN in some cities

- New York is the champion: $\langle S
 angle = 135\,\mathrm{m}^2$;
- Paris is suspected to have some problems: $\langle S \rangle = 36.6 \,\mathrm{m^2}$;
- Hong Kong is the leader in South-East Asia, $\langle S
 angle = 47 \, {
 m m}^2$;
- Moscow just feel the difference! $\langle S
 angle = 5,7\,\mathrm{m^2};$
- Krasnoyarsk (my estimation): $\langle S
 angle = 11 \div 14 \, {
 m m}^2$.

Introduction. Models	Before modeling 00●	Preliminary results	Conclusion
General issues			
Connectivity of SL	RN		

For our purposes, the connectivity of SLRN is the necessity to visit some specific node (or an edge) of SLRN graph when driving from point A to point B.

Krasnoyarsk SLRN has very low global connectivity: there are three bridges over Enisey and three traffic junctions with railway, on both sides of the city.

There are a lot of other "bottlenecks" in the city SLRN.

Introduction. Models	Before modeling	Preliminary results	Conclu
		00000	

sion

SLRN graph indicators

Distribution of road junctions number in the city, 2×2 km grid

Introduction. Models	Before modeling	Preliminary results	Conclu
		0000	

SLRN graph indicators

Distribution of average SLRN graph node power, over $2 \times 2 \text{ km}$ grid

sion

Introduction.	Models

Before modeling

Preliminary results

Conclusion

SLRN graph indicators

Average number of one-way roads in the city SLRN

Introduction.	Models

Before modeling

Preliminary results

Conclusion

SLRN graph indicators

Distribution of random routs longer than 10 km

Introduction. Models	Before modeling	Preliminary results	Conclusion
Current shortages			
What we need for effe	ective modeling		

- Actualized SLRN map.
- Oata records on "microscopic" moving features (= local fluxes in junctions and along the streets).
- Solution Knowledge of transportation behaviour of the city residents driving a vehicle: this is the terrible shortage!
- **③** Data records on passengers flows in public transportation.
- Data records on diurnal migration of the residents: where to, where from, when and how many users of city transport network run over SLRN.

Introduction. Models	Before modeling	Preliminary results 00000	Conclusion

... and the most essential is:

- One may pursue a fundamental studies in transportation modeling with obvious out-come: SCOPUS, Hirsch, etc.
- Any applied research requires exact and comprehensive project description.

Introduction. Models

Before modeling

Preliminary results

Conclusion

Thank you for your attention!

Thanks a lot and questions, if we still have some time!