## ЗАКОНОМЕРНОСТИ РАЗВИТИЯ БУРОВЫХ МАШИН

## Чемакин Д.С. Научный руководитель – к.т.н., доцент Дмитриев В.А.

## Сибирский федеральный университет

Современные буровые машины не лишены целого ряда недостатков. Так в частности при увеличения погружения рабочего органа, возникает необходимость в увеличении длины мачты, что приводит: к некачественным геометрическим параметрам скважины, к увеличению сопротивления грунта при бурение так и транспортирование из скважины. При увеличении габаритных размеров машины неизбежно возрастает расход энергии.

Для выявления на системном уровне всех нежелательных эффектов типовой конструкции буровой машины был использован современный аппарат инновационного проектирования, в частности – ITD технология.

Предлагается разрушения горной породы гидродинамическим импульсом, разделением частиц горной породы путем направленного действия воды и электричества.

Электрогидравлическое бурение, при котором электрическая энергия непосредственно в самом забое переходит в механическую работу, разрушая горную породу, является принципиально новым способом бурения. Для его осуществления предназначены, электрогидравлические буры различных типов и модификаций.

В зависимости от конструкции, и назначения бура электродов в буре может быть два или несколько; они могут быть неподвижными, вращающимися, а также совершать колебательные движения. Движение электродов может, осуществляться либо от постороннего источника (движителя), либо за счет энергии проходящей воды, либо силой действия самих электрогидравлических ударов представлены на рисунке 27 и 28.

Таблица 3 – Последовательность разработки концепции

| Содержание шага             | Результат шага                                |
|-----------------------------|-----------------------------------------------|
| Формулировка ключевых задач | Как передать реакцию мачты на бур?            |
|                             | Как осуществлять беспрерывное                 |
|                             | транспортирование грунта?                     |
| Решение ключевых задач      | В этом случае мачта это направляющая труба.   |
|                             | Направляет высоконапорную струю на породу     |
|                             | грунта, тем самым осуществляется процесс      |
|                             | получения скважины. В этом случае нет смысла  |
|                             | передавать реакцию мачты на бур.              |
|                             | Транспортирование грунта будет осуществляться |
|                             | с помощью жидкости, которая подаётся для      |
|                             | бурения скважины.                             |
| Обоснование идей            | Принципиальный новый способ бурения горной    |
|                             | породы.                                       |

Достоинства предлагаемого способа:

- 1) Полное отсутствие буровой машины с направляющим элементом (Мачты);
- 2)Возможность транспортирования активных элементов по частям в условиях отсутствия дорог;
  - 3)Возможность бурения скважин в заданном направлении;
  - 4) Исключается износ буровой насадки;
- 5)Высокая управляемость активными элементами и возможность создания значительных усилий;
  - 6)Компактность оборудования и высокая технологичность его производства; Недостатки предлагаемого способа:
  - 1)Сложность бурения мягких типов грунтов
  - 2)Сложность работы со сверх высоким напряжением.

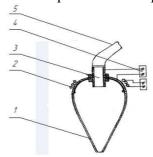



Рисунок 27 — Схема бурения гидродинамическим импульсом 1-Жидкость, 2-Электроды, 3-Горная порода 4-ЭБУ, 5- Проводник.

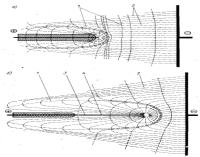



Рисунок 28 — Схема электрического поля в жидкости а-при подаче импульса на электроды б-при прорастании стримера 1-эквипотенциальные поверхности поля; 2-силовые линии поля; 3-стример; 4-оболочка канала стримера.

Данная буровая машина работает по принципу Л.А. Юткина преобразования электрической энергии в механическую энергию, открывшего "Электрогидравлический эффект". Двигателем служит генератор, который преобразует переменный электрический ток низкого напряжения, трансформатором он преобразуется в ток высокого напряжения, выпрямляется электронными выпрямителями в постоянный ток и поступает в конденсаторы, когда в них накопиться определенное количество электрической энергии происходит пробой воздушного промежутка между разрядными шарами, при этом возникает пробой и водной среды. С погружением электрода разряд достигает второго электрода на воде, пробой, в результате образуется электрический удар давлением в 100000 атмосфер. Схема импульса показана на рисунке 29.

Математическое описание мощности импульса на выходе

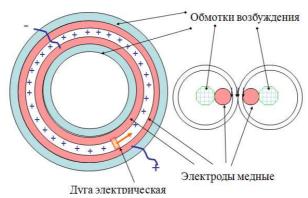



Рисунок 29 – Структурная схема электрогидравлической установки.

| $\square_{эл.дуги} = -\square_{давл.} \cdot \square_{эл.дуги} + \square_{\square} - \square_{\square} - \Delta \square;$               | (1) |
|----------------------------------------------------------------------------------------------------------------------------------------|-----|
| $\square_{\text{эл.дуги}}$ — Мощность электро дуги в канале на выходе;                                                                 |     |
| □ <sub>давл.</sub> — Давление плазмы в канале;                                                                                         |     |
| $\square_{\text{эл.дуги}}$ — Скорость электро дуги в канале;                                                                           |     |
| $\square_{\square}$ — Мощность выделяемая в канале в виде Джоуля тепла;                                                                |     |
| □ п Мощность потерь энергии из канала на излучение;                                                                                    |     |
| $\Delta\Box$ — Мощность, затрачиваемая на испарение стенки канала                                                                      |     |
| при протекании по нему электрического тока высокой плотности;                                                                          |     |
| $\Box_{\text{давл.}} = 0.62 \cdot 10^{21} \text{ кэВ/м}^3;$                                                                            |     |
| $\Box_{\text{эл.дуги}} = 340,29 \text{м}/\Box;$                                                                                        |     |
| Мощность выделяемая в канале в виде Джоуля тепла                                                                                       |     |
| $\Box_{\Box} = \frac{\Box^2 \cdot \mathbf{l}}{\pi \cdot \mathbf{a}^2};$                                                                | (2) |
| $\Box$ — ток разряда;                                                                                                                  |     |
| l, a — длинна и ширина канала(м);                                                                                                      |     |
| Мощность потерь энергии из канала на излучение                                                                                         |     |
| $\square_{\mathrm{R}} = rac{\square_{\mathfrak{I}, \mathrm{ДУГИ}} \cdot \square_{\square} \cdot \square^4}{\pi \cdot \mathrm{a}^2}$ ; | (3) |
| □ □ − постоянная Стефана − Больцмана;                                                                                                  |     |
| □ – температура плазмы разряда;                                                                                                        |     |
| Mощность, затрачиваемая на испарение стенки канала при                                                                                 |     |
| протекании по нему электрического тока высокой плотности                                                                               |     |
| $\Delta\Box = -2\pi\Box\Box\Box\Box\Box\Box\Box\Box\Box\Box$ ;                                                                         | (4) |

Ст – постоянная Трутона

Н — энергия сублимации моля жидкости;

R — универсальная газовая постоянная;

т – масса молекулы жидкости;

 $N_{\rm A}$  — число малекул жидкости при диссоциации;

k — постоянная Больцмана;

Предложен совершенно новый способ бурения грунта. В котором сокращаются многие нежелательные эффекты, такие как износ бура, сложность конструкции, задаваемые тяжёлыми частями, такие как мачта, стало возможно неограниченное расстояние бурения, возможность к совершению поворота, бурения скважины и многие другие функции, с которыми не справлялась предшествующая буровая машина. И на конец самый главный нежелательный эффект экономический. Электрогидравлический эффект (ЭГ) это самый доступный, самый эффективный и экономичный способ превращения электрической энергии в механическую энергию.